Skip to main content
Log in

Molecular Detection and Genetic Identification of Wolbachia Endosymbiont in Wild-Caught Culex quinquefasciatus (Diptera: Culicidae) Mosquitoes from Sumatera Utara, Indonesia

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The genetic identity of Wolbachia endosymbiont in wild-caught Culex quinquefasciatus was determined for the first time in Indonesia. A total of 314 Cx. quinquefasciatus were examined for Wolbachia by PCR assay targeting the Wolbachia surface protein (wsp) gene. The prevalence of Wolbachia infection was detected in 29.94% of Cx. specimens (45.86% female and 8.27% male). The group-specific infection was detected with an infection rate of 0.32%, 28.98%, and 0.64% in groups A, B, and A&B, respectively. Phylogenetic analysis revealed all Wolbachia strains from Indonesia were genetically affiliated to the supergroup A and B with the high sequence similarity of 97.9–100% and 99.7–100%, respectively. Phylogenetic relationships can be easily distinguished by neighbor-joining analysis and were congruent by maximum likelihood method. The genetic distance (GD) values of intra- and inter-group analysis indicated a lower level (GD < 0.007 for group A and GD < 0.003 for group B) within the Indonesia strains and a higher level (GD > 1.125 for group A and GD > 1.129 for group B) as compared with other Wolbachia strains. Our results provide the first genetic identification of Wolbachia endosymbiont in Cx. quinquefasciatus collected from Indonesia, and the phylogenetic analysis revealed a new discovery of group A Wolbachia in wild-caught Cx. quinquefasciatus mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Simonsen PE, Mwakitalu ME (2013) Urban lymphatic filariasis. Parasitol. Res. 112(1):35–44

    Article  PubMed  Google Scholar 

  2. Kay BH, Brown MD, Siti Z, Bangs MJ (2013) Field evaluations of disposable sticky lures for surveillance of Aedes aegypti (Stegomyia aegypti) and Culex quinquefasciatus in Jakarta. Med. Vet. Entomol. 27(3):267–275

    Article  CAS  PubMed  Google Scholar 

  3. Yahathugoda TC, Supali T, Rao RU, Djuardi Y, Stefani D, Pical F, Weil GJ (2015) A comparison of two tests for filarial antigenemia in areas in Sri Lanka and Indonesia with low-level persistence of lymphatic filariasis following mass drug administration. Parasit. Vectors 8:369

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee VH, Atmosoedjono S, Rusmiarto S, Aep S, Semendra W (1983) Mosquitoes of Bali Island, Indonesia: common species in the village environment. Southeast Asian J Trop Med Public Health 14(3):298–307

    CAS  PubMed  Google Scholar 

  5. Oemijati S, Desowitz RS, Partono F, Pant CP, Mechfudin H, Sajidiman H (1975) Studies on filariasis in the Pacific. The application of the membrane filter concentration technique to a survey of Wuchereria bancrofti filariasis in Kepu district, Jakarta. Indonesia. Southeast Asian J Trop Med Public Health 6(2):186–189

    CAS  PubMed  Google Scholar 

  6. Self LS, Usman S, Sajioiman H, Partono F, Nelson MJ, Pant CP, Mechfudin H (1978) A multidisciplinary study on bancroftian filariasis in Jakarta. Trans. R. Soc. Trop. Med. Hyg. 72(6):581–587

    Article  CAS  PubMed  Google Scholar 

  7. Ditjen P2P, Kemenkes RI (Indonesian Health Ministry) (2016) Profil Kesehatan Indonesia Tahun 2015, pp. 192–193. ISBN 978–602–416-065-4

  8. Werren JH (1997) Biology of Wolbachia. Annu. Rev. Entomol. 42(1):587–609

    Article  CAS  PubMed  Google Scholar 

  9. Tram U, Sullivan W (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296(5570):1124–1126

    Article  CAS  PubMed  Google Scholar 

  10. Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond Biol Sci 265(1413):2407–2413

    Article  CAS  Google Scholar 

  11. Fischer P, Schmetz C, Bandi C, Bonow I, Mand S, Fischer K, Buttner DW (2002) Tunga penetrans: molecular identification of Wolbachia endobacteria and their recognition by antibodies against proteins of endobacteria from filarial parasites. Exp. Parasitol. 102(3):201–211

    Article  CAS  PubMed  Google Scholar 

  12. Hertig M, Wolbach SB (1924) Studies on rickettsia-like micro-organisms in insects. J Med Res 44(3):329–374 327

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?--a statistical analysis of current data. FEMS Microbiol. Lett. 281(2):215–220

    Article  CAS  PubMed  Google Scholar 

  14. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 9(4):393–405

    Article  CAS  PubMed  Google Scholar 

  15. Rasgon JL (2012) Wolbachia induces male-specific mortality in the mosquito Culex pipiens (LIN strain). PLoS One 7(3):e30381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751

    Article  CAS  PubMed  Google Scholar 

  17. Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216:383–384

    Article  CAS  PubMed  Google Scholar 

  18. Aliota MT, Peinado SA, Velez ID, Osorio JE (2016a) The wMel strain of Wolbachia reduces transmission of zika virus by Aedes aegypti. Sci. Rep. 6:28792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aliota MT, Walker EC, Yepes A, Velez ID, Christensen BM, Osorio JE (2016b) The wMel strain of Wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl. Trop. Dis. 10(4):e0004677

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nazni WA, Hoffmann AA, NoorAfizah A et al (2019) Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr. Biol. 29:4241–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O’Neill SC (2014) Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8(2):e2688

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457

    Article  CAS  PubMed  Google Scholar 

  23. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139(7):1268–1278

    Article  PubMed  Google Scholar 

  24. Benson MJ, Gawronski JD, Eveleigh DE, Benson DR (2004) Intracellular symbionts and other bacteria associated with deer ticks (Ixodes scapularis) from Nantucket and Wellfleet, Cape Cod, Massachusetts. Appl. Environ. Microbiol. 70(1):616–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bordenstein S, Rosengaus RB (2005) Discovery of a novel Wolbachia super group in Isoptera. Curr. Microbiol. 51(6):393–398

    Article  CAS  PubMed  Google Scholar 

  26. Andreotti R, Perez AA, Scoles GA (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 11:6–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carpi G, Cagnacci F, Wittekindt NE, Zhao F, Qi J, Tomsho LP, Drautz DI, Rizzoli A, Schuster SC (2011) Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS One 6(10):e25604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bing XL, Xia WQ, Gui JD, Yan GH, Wang XW, Liu SS (2014) Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies. Ecol Evol 4(13):2714–2737

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou W, Rousset F, O'Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond Biol Sci 265:509–515

    Article  CAS  Google Scholar 

  30. Ruang-Areerate T, Kittayapong P, Baimai V, O’Neill SL (2003) Molecular phylogeny of Wolbachia endosymbionts in southeast Asian mosquitoes (Diptera: Culicidae) based on wsp gene sequences. J. Med. Entomol. 40(1):1–5

    Article  CAS  PubMed  Google Scholar 

  31. Chai HN, Du YZ, Qiu BL, Zhai BP (2011) Detection and phylogenetic analysis of Wolbachia in the Asiatic rice leafroller, Cnaphalocrocis medinalis, in Chinese populations. J. Insect Sci. 11:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Norris DE, Rasgon JL (2011) Distribution and molecular characterization of Wolbachia endosymbionts and filarial nematodes in Maryland populations of the lone star tick (Amblyomma americanum). FEMS Microbiol. Ecol. 77(1):50–56

    Article  CAS  PubMed  Google Scholar 

  33. Wang GH, Jia LY, Xiao JH, Huang DW (2016) Discovery of a new Wolbachia supergroup in cave spider species and the lateral transfer of phage WO among distant hosts. Infect. Genet. Evol. 41:1–7

    Article  PubMed  Google Scholar 

  34. Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond Biol Sci 261:55–63

    Article  CAS  Google Scholar 

  35. WHO (2020) Pictorial identification key of important disease vectors in the WHO South-East Asia region, ISBN: 978-92-9022-758-8

  36. Chan A, Chiang LP, Hapuarachchi HC, Tan CH, Pang SC, Lee R, Lee KS, Ng LC, Lam-Phua SG (2014) DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit. Vectors 7:569

    Article  PubMed  PubMed Central  Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  38. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Bio Evol 35:1547–1549

    Article  CAS  Google Scholar 

  39. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120

    Article  CAS  PubMed  Google Scholar 

  40. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 52:1119–1134

    Google Scholar 

  41. Sunish IP, Rajendran R, Paramasivan R, Dhananjeyan KJ, Tyagi BK (2011) Wolbachia endobacteria in a natural population of Culex quinquefasciatus from filariasis endemic villages of South India and its phylogenetic implication. Trop. Biomed. 28(3):569–576

    CAS  PubMed  Google Scholar 

  42. Carvajal TM, Capistrano JDR, Hashimoto K, Go KJD, Cruz MAIJ, Martinez MJLB, Tiopianco VSP, Amalin DM, Watanabe K (2018) Detection and distribution of Wolbachia endobacteria in Culex quinquefasciatus populations (Diptera: Culicidae) from metropolitan Malina, Philippines. J Vector Borne Dis 55:265–270

    Article  PubMed  Google Scholar 

  43. Yildirim A, Inci A, Duzlu O, Onder Z, Ciloglu A (2013) Detection and molecular characterization of the Wolbachia endobacteria in the Culex pipiens (Diptera: Culicidae) specimens collected from Kayseri province of Turkey. Ankara Univ Vet Fak Derg 60:189–194

    Article  Google Scholar 

  44. Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165(4):2029–2038

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen L, Zhu C, Zhang D (2013) Naturally occurring incompatibilities between different Culex pipiens pallens populations as the basis of potential mosquito control measures. PLoS Negl. Trop. Dis. 7(1):e2030

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mahilum MM, Storch V, Becker N (2003) Molecular and electron microscopic identification of Wolbachia in Culex pipiens complex populations from the Upper Rhine Valley, Germany, and Cebu City, Philippines. J. Am. Mosq. Control Assoc. 19(3):206–210

    PubMed  Google Scholar 

  47. Karami M, Moosa-Kazemi SH, Oshaghi MA, Vatandoost H, Sedaghat MM, Rajabnia R, Hosseini M, Maleki-Ravasan N, Yahyapour Y, Ferdosi-Shahandashti,E (2016) Wolbachia endobacteria in natural populations of Culex pipiens of Iran and its phylogenetic congruence. J. Arthropod. Borne Dis. 10(3):49–365

  48. Tsai KH, Lien JC, Huang CG, Wu WJ, Chen WJ (2004) Molecular grouping of endosymbiont Wolbachia infection among mosquitoes of Taiwan. J. Med. Entomol. 41(4):677–683

    Article  CAS  PubMed  Google Scholar 

  49. Atyame CM, Labbe P, Dumas E, Milesi P, Charlat S, Fort P, Weill M (2014) Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens. PLoS One 9(1):e87336

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ravikumar H, Ramachandraswamy N, Sampathkumar S, Prakash BM, Huchesh HC, Uday J, Puttaraju HP (2010) A preliminary survey for Wolbachia and bacteriophage WO infection in Indian mosquitoes (Diptera: Culicidae). Trop. Biomed. 27(3):384–393

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the family of Lely Ophine for helping the collection of mosquitoes from Sumatera Utara, Indonesia.

Funding

This work was supported in part by grant from the Ministry of Science and Technology (MOST 109-2314-B-037-077), Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Chao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, CM., Ophine, L. & Chao, LL. Molecular Detection and Genetic Identification of Wolbachia Endosymbiont in Wild-Caught Culex quinquefasciatus (Diptera: Culicidae) Mosquitoes from Sumatera Utara, Indonesia. Microb Ecol 81, 1064–1074 (2021). https://doi.org/10.1007/s00248-020-01655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01655-x

Keywords

Navigation