Skip to main content

Advertisement

Log in

Core and Dynamic Microbial Communities of Two Invasive Ascidians: Can Host–Symbiont Dynamics Plasticity Affect Invasion Capacity?

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ascidians (Chordata, Ascidiacea) are considered to be prominent marine invaders, able to tolerate highly polluted environments and fluctuations in salinity and temperature. Here, we examined the seasonal and spatial dynamics of the microbial communities in the inner-tunic of two invasive ascidians, Styela plicata (Lesueur 1823) and Herdmania momus (Savigny 1816), in order to investigate the changes that occur in the microbiome of non-indigenous ascidians in different environments. Microbial communities were characterized using next-generation sequencing of partial (V4) 16S rRNA gene sequences. A clear differentiation between the ascidian-associated microbiome and bacterioplankton was observed, and two distinct sets of operational taxonomic units (OTUs), one core and the other dynamic, were recovered from both species. The relative abundance of the dynamic OTUs in H. momus was higher than in S. plicata, for which core OTU structure was maintained independently of location. Ten and seventeen core OTUs were identified in S. plicata and H. momus, respectively, including taxa with reported capabilities of carbon fixing, ammonia oxidization, denitrification, and heavy-metal processing. The ascidian-sourced dynamic OTUs clustered in response to site and season but significantly differed from the bacterioplankton community structure. These findings suggest that the associations between invasive ascidians and their symbionts may enhance host functionality while maintaining host adaptability to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 34:407–417. https://doi.org/10.1046/j.1529-8817.1998.340407.x

    Article  Google Scholar 

  2. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71:295–347. https://doi.org/10.1128/MMBR.00040-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412. https://doi.org/10.1126/science.219.4583.410

    Article  CAS  PubMed  Google Scholar 

  4. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709. https://doi.org/10.2307/1309663

    Article  CAS  Google Scholar 

  5. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11:2228–2243. https://doi.org/10.1111/j.1462-2920.2009.01944.x

    Article  CAS  PubMed  Google Scholar 

  6. Martínez-García M, Stief P, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Dubilier N, Antón J (2008) Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ. Microbiol. 10:2991–3001. https://doi.org/10.1111/j.1462-2920.2008.01761.x

    Article  CAS  PubMed  Google Scholar 

  7. Lesser MP (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000. https://doi.org/10.1126/science.1099128

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiol J. 22:1–10. https://doi.org/10.1080/01490450590922505

    Article  Google Scholar 

  9. Klussmann-Kolb A, Brodie GD (1999) Internal storage and production of symbiotic bacteria in the reproductive system of a tropical marine gastropod. Mar. Biol. 133:443–447. https://doi.org/10.1007/s002270050483

    Article  Google Scholar 

  10. Fitt WK, Coon SL, Walch M, Weiner RM, Colwell RR, Bonar DB (1990) Settlement behavior and metamorphosis of oyster larvae (Crassostrea gigas) in response to bacterial supernatants. Mar. Biol. 106:389–394. https://doi.org/10.1007/BF01344317

    Article  Google Scholar 

  11. Thompson JR, Rivera HE, Closek CJ, Medina M (2015) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176. https://doi.org/10.3389/fcimb.2014.00176

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wilkinson CR (1978) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176. https://doi.org/10.1007/BF00387116

  13. Newton IL, Girguis PR, Cavanaugh CM (2008) Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts. BMC Genomics 9:585. https://doi.org/10.1186/1471-2164-9-585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waterbury JB, Calloway CB, Turner RD (1983) A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (Bivalvia: Teredinidae). Science 221:1401–1403. https://doi.org/10.1126/science.221.4618.1401

    Article  CAS  PubMed  Google Scholar 

  15. Prieur D, Mével G, Nicolas JL et al (1990) Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 28:277–352

    Google Scholar 

  16. Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40. https://doi.org/10.1023/A:1012756913566

    Article  Google Scholar 

  17. Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61:888–898. https://doi.org/10.1525/bio.2011.61.11.8

    Article  Google Scholar 

  18. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis.”. Mar. Biol. 136:969–977. https://doi.org/10.1007/s002270000273

    Article  CAS  Google Scholar 

  19. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119:1–11. https://doi.org/10.1007/BF00350100

    Article  CAS  Google Scholar 

  20. Paul VJ, Arthur KE, Ritson-Williams R, Ross C, Sharp K (2007) Chemical defenses: from compounds to communities. Biol. Bull. 213:226–251. https://doi.org/10.2307/25066642

    Article  CAS  PubMed  Google Scholar 

  21. Castro D, Pujalte MJ, Lopez-Cortes L, Garay E, Borrego JJ (2002) Vibrios isolated from the cultured manila clam (Ruditapes philippinarum): numerical taxonomy and antibacterial activities. J. Appl. Microbiol. 93:438–447. https://doi.org/10.1046/j.1365-2672.2002.01709.x

    Article  CAS  PubMed  Google Scholar 

  22. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ. Microbiol. 8:2068–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x

    Article  CAS  PubMed  Google Scholar 

  23. Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol. Ecol. 67:371–380. https://doi.org/10.1111/j.1574-6941.2008.00644.x

    Article  CAS  PubMed  Google Scholar 

  24. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615. https://doi.org/10.2307/1313420

    Article  Google Scholar 

  25. Simonsen AK, Dinnage R, Barrett LG, Prober SM, Thrall PH (2017) Symbiosis limits establishment of legumes outside their native range at a global scale. Nat. Commun. 8:14790. https://doi.org/10.1038/ncomms14790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zurel D, Benayahu Y, Or A, Kovacs A, Gophna U (2011) Composition and dynamics of the gill microbiota of an invasive Indo-Pacific oyster in the eastern Mediterranean Sea. Environ. Microbiol. 13:1467–1476. https://doi.org/10.1111/j.1462-2920.2011.02448.x

    Article  PubMed  Google Scholar 

  27. Galbreath JGMS, Smith JE, Terry RS et al (2004) Invasion success of Fibrillanosema crangonycis, n.sp., n.g.: a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. Int. J. Parasitol. 34:235–244. https://doi.org/10.1016/j.ijpara.2003.10.009

    Article  Google Scholar 

  28. Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5:368. https://doi.org/10.3389/fmicb.2014.00368

    Article  PubMed  PubMed Central  Google Scholar 

  29. Evans JS, Erwin PM, Shenkar N, López-Legentil S (2017) Introduced ascidians harbor highly diverse and host-specific symbiotic microbial assemblages. Sci. Rep. 7:11033. https://doi.org/10.1038/s41598-017-11441-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Erwin PM, Pineda MC, Webster N, et al (2013) Small core communities and high variability in bacteria associated with the introduced ascidian Styela plicata. Symbiosis 59:35–46. https://doi.org/10.1007/s13199-012-0204-0

  31. Vrijenhoek RC (2010) Genetics and evolution of deep-sea chemosynthetic bacteria and their invertebrate hosts. The vent and seep biota, topics in geobiology. Springer, Dordrecht, pp 15–49

    Chapter  Google Scholar 

  32. Roterman YR, Benayahu Y, Reshef L, Gophna U (2015) The gill microbiota of invasive and indigenous Spondylus oysters from the Mediterranean Sea and northern Red Sea. Environ. Microbiol. Rep. 7:860–867. https://doi.org/10.1111/1758-2229.12315

    Article  CAS  PubMed  Google Scholar 

  33. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037

    Article  Google Scholar 

  34. Lambert G (2001) A global overview of ascidian introductions and their possible impact on the endemic fauna. The biology of ascidians. Springer Japan, Tokyo, pp 249–257

    Chapter  Google Scholar 

  35. Monniot C, Monniot F, Laboute P (1991) Coral reef ascidians of New Caledonia. Orstom, Paris

    Google Scholar 

  36. Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS One 6:e20657. https://doi.org/10.1371/journal.pone.0020657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lambert CC, Lambert G (1998) Non-indigenous ascidians in southern California harbors and marinas. Mar. Biol. 130:675–688. https://doi.org/10.1007/s002270050289

    Article  Google Scholar 

  38. Millar RH (1971) The biology of ascidians. Adv. Mar. Biol. 9:1–100. https://doi.org/10.1016/S0065-2881(08)60341-7

    Article  Google Scholar 

  39. Svane I, Young C (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol Annu Rev 27:45–90. https://doi.org/10.1080/00364827.1980.10431474

    Article  Google Scholar 

  40. Lambert G (2007) Invasive sea squirts: a growing global problem. J Exp Mar Bio Ecol 342:3–4

    Article  Google Scholar 

  41. Rius M, Heasman KG, McQuaid CD (2011) Long-term coexistence of non-indigenous species in aquaculture facilities. Mar. Pollut. Bull. 62:2395–2403. https://doi.org/10.1016/j.marpolbul.2011.08.030

    Article  CAS  PubMed  Google Scholar 

  42. Lambert G (2002) Nonindigenous ascidians in tropical waters. Pac Sci 56:291–298. https://doi.org/10.1353/psc.2002.0026

    Article  Google Scholar 

  43. Naranjo S, Carballo J, García-Gómez J (1996) Effects of environmental stress on ascidian populations in Algeciras Bay (southern Spain). Possible marine bioindicators? Mar. Ecol. Prog. Ser. 144:119–131. https://doi.org/10.3354/meps144119

    Article  Google Scholar 

  44. Pineda MC, Turon X, López-Legentil S (2012) Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress Chaperones 17:435–444. https://doi.org/10.1007/s12192-012-0321-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rocha RM, Castellano GC, Freire CA (2017) Physiological tolerance as a tool to support invasion risk assessment of tropical ascidians. Mar. Ecol. Prog. Ser. 577:105–119. https://doi.org/10.3354/meps12225

    Article  CAS  Google Scholar 

  46. Nagar LR, Shenkar N (2016) Temperature and salinity sensitivity of the invasive ascidian Microcosmus exasperatus Heller, 1878. Aquat. Invasions 11:33–43. https://doi.org/10.3391/ai.2016.11.1.04

    Article  Google Scholar 

  47. Lambert CC, Lambert G (2003) Persistence and differential distribution of nonindigenous ascidians in harbors of the southern California Bight. Mar. Ecol. Prog. Ser. 259:145–161

    Article  Google Scholar 

  48. Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. U. S. A. 102:7315–7320. https://doi.org/10.1073/pnas.0501424102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmidt EW (2015) The secret to a successful relationship: lasting chemistry between ascidians and their symbiotic bacteria. Invertebr. Biol. 134:88–102. https://doi.org/10.1111/ivb.12071

    Article  PubMed  Google Scholar 

  50. Erwin PM, Pineda MC, Webster N, Turon X, López-Legentil S (2014) Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians. ISME J 8:575–588. https://doi.org/10.1038/ismej.2013.188

    Article  CAS  PubMed  Google Scholar 

  51. Tianero MDB, Kwan JC, Wyche TP, Presson AP, Koch M, Barrows LR, Bugni TS, Schmidt EW (2015) Species specificity of symbiosis and secondary metabolism in ascidians. ISME J 9:615–628. https://doi.org/10.1038/ismej.2014.152

    Article  PubMed  Google Scholar 

  52. Hirose E, Maruyama T (2004) What are the benefits in the ascidian-Prochloron symbiosis? Endocytobiosis Cell Res 15:51–62

    Google Scholar 

  53. Hirose E (2015) Ascidian photosymbiosis: diversity of cyanobacterial transmission during embryogenesis. Genesis 53:121–131. https://doi.org/10.1002/dvg.22778

    Article  PubMed  Google Scholar 

  54. López-Legentil S, Turon X, Espluga R, Erwin PM (2015) Temporal stability of bacterial symbionts in a temperate ascidian. Front. Microbiol. 6:1022. https://doi.org/10.3389/fmicb.2015.01022

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pérès J (1958) Ascidies recoltées sur les côtes Méditerranéennes d’Israel. Bull Res Counc Isr B 7:143–150

    Google Scholar 

  56. Por FD (1978) Lessepsian migration. The influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Springer-Verlag, Berlin

  57. Shenkar N, Loya Y (2009) Non-indigenous ascidians (Chordata: Tunicata) along the Mediterranean coast of Israel. Mar Biodivers Rec 2:e166. https://doi.org/10.1017/S1755267209990753

    Article  Google Scholar 

  58. Pineda MC, López-Legentil S, Turon X (2011) The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata. PLoS One 6:e25495. https://doi.org/10.1371/journal.pone.0025495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shenkar N, Loya Y (2008) The solitary ascidian Herdmania momus: native (Red Sea) versus non-indigenous (Mediterranean) populations. Biol. Invasions 10:1431–1439. https://doi.org/10.1007/s10530-008-9217-2

    Article  Google Scholar 

  60. Gewing M-T, Rothman SBS, Nagar LR et al (2014) Early stages of establishment of the non-indigenous ascidian Herdmania momus (Savigny, 1816) in shallow and deep water environments on natural substrates in the Mediterranean Sea. BioInv Rec 3:77–81. https://doi.org/10.3391/bir.2014.3.2.04

    Article  Google Scholar 

  61. Barros R, da Rocha RM, Pie M (2009) Human-mediated global dispersion of Styela plicata (Tunicata, Ascidiacea). Aquat. Invasions 4:45–57. https://doi.org/10.3391/ai.2009.4.1.4

    Article  Google Scholar 

  62. Pineda MC, Turon X, Pérez-portela R, López-legentil S (2016) Stable populations in unstable habitats: temporal genetic structure of the introduced ascidian Styela plicata in North Carolina. Mar. Biol. 163:1–14. https://doi.org/10.1007/s00227-016-2829-7

    Article  Google Scholar 

  63. Novak L, López-Legentil S, Sieradzki E, Shenkar N (2017) Rapid establishment of the non-indigenous ascidian Styela plicata and its associated bacteria in marinas and fishing harbors along the Mediterranean coast of Israel. Mediterr. Mar. Sci. 18:324–331. https://doi.org/10.12681/mms.2135

    Article  Google Scholar 

  64. Dror H (2017) Hidden allies : the potential contribution of bacterial communities to the successful establishment of the invasive ascidians Styela plicata and Herdmania momus in the Eastern Mediterranean. (MSc thesis). Tel-Aviv University, Tel-Aviv, Israel

  65. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  66. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77:3219–3226. https://doi.org/10.1128/AEM.02810-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weigel BL, Erwin PM (2015) Intraspecific variation in microbial symbiont communities of the sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats. Appl Environ Microbiol 82:650–658. https://doi.org/10.1128/AEM.02980-15

    Article  CAS  PubMed  Google Scholar 

  69. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oksanen J, Blanchet FG, Kindt R, et al (2016) Package “vegan”: community ecology package

  73. Kim KI, van de Wiel MA (2008) Effects of dependence in high-dimensional multiple testing problems. BMC Bioinf 9:114. https://doi.org/10.1186/1471-2105-9-114

    Article  Google Scholar 

  74. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199. https://doi.org/10.1038/nature08058

    Article  CAS  PubMed  Google Scholar 

  75. Cahill PL, Fidler AE, Hopkins GA, Wood SA (2016) Geographically conserved microbiomes of four temperate water tunicates. Environ. Microbiol. Rep. 8:470–478. https://doi.org/10.1111/1758-2229.12391

    Article  CAS  PubMed  Google Scholar 

  76. Chen L, Fu C, Wang G (2017) Microbial diversity associated with ascidians: a review of research methods and application. Symbiosis 71:19–26. https://doi.org/10.1007/s13199-016-0398-7

    Article  CAS  Google Scholar 

  77. López-Legentil S, Turon X, Erwin PM (2016) Feeding cessation alters host morphology and bacterial communities in the ascidian Pseudodistoma crucigaster. Front. Zool. 13(2):2. https://doi.org/10.1186/s12983-016-0134-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martínez-García M, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Antón J (2007) Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ. Microbiol. 9:521–534. https://doi.org/10.1111/j.1462-2920.2006.01170.x

    Article  CAS  PubMed  Google Scholar 

  79. Tait E, Carman M, Sievert SM (2007) Phylogenetic diversity of bacteria associated with ascidians in eel pond (woods hole, Massachusetts, USA). J Exp Mar Bio Ecol 342:138–146. https://doi.org/10.1016/j.jembe.2006.10.024

    Article  Google Scholar 

  80. Hester ER, Barott KL, Nulton J, Vermeij MJA, Rohwer FL (2016) Stable and sporadic symbiotic communities of coral and algal holobionts. ISME J 10:1157–1169. https://doi.org/10.1038/ismej.2015.190

    Article  CAS  PubMed  Google Scholar 

  81. Behrendt L, Larkum AWD, Trampe E, Norman A, Sørensen SJ, Kühl M (2012) Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J 6:1222–1237. https://doi.org/10.1038/ismej.2011.181

    Article  CAS  PubMed  Google Scholar 

  82. Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U, Borisov SM, Klimant I, Larkum AWD (2012) Microenvironmental ecology of the chlorophyll b-containing symbiotic cyanobacterium Prochloron in the didemnid ascidian Lissoclinum patella. Front. Microbiol. 3:402. https://doi.org/10.3389/fmicb.2012.00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pita L, López-Legentil S, Erwin PM (2013) Biogeography and host fidelity of bacterial communities in Ircinia spp. from the Bahamas. Microb. Ecol. 66:437–447. https://doi.org/10.1007/s00248-013-0215-2

    Article  CAS  PubMed  Google Scholar 

  84. Pita L, Turon X, López-Legentil S, Erwin PM (2013) Host rules: spatial stability of bacterial communities associated with marine sponges (Ircinia spp.) in the Western Mediterranean Sea. FEMS Microbiol. Ecol. 86:268–276. https://doi.org/10.1111/1574-6941.12159

    Article  CAS  PubMed  Google Scholar 

  85. Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS One 5:1–7. https://doi.org/10.1371/journal.pone.0009554

    Article  CAS  Google Scholar 

  86. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14:335–346. https://doi.org/10.1111/j.1462-2920.2011.02460.x

    Article  CAS  PubMed  Google Scholar 

  87. Donia MS, Fricke WF, Ravel J, Schmidt EW (2011) Variation in tropical reef symbiont metagenomes defined by secondary metabolism. PLoS One 6:e17897. https://doi.org/10.1371/journal.pone.0017897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nyholm SV, McFall-Ngai M (2004) The winnowing: establishing the squid–vibrio symbiosis. Nat Rev Microbiol 2:632–642. https://doi.org/10.1038/nrmicro957

    Article  CAS  PubMed  Google Scholar 

  89. Sharp KH, Ritchie KB, Schupp PJ, Ritson-Williams R, Paul VJ (2010) Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS One 5:e10898. https://doi.org/10.1371/journal.pone.0010898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aires T, Serrão EA, Engelen AH (2016) Host and environmental specificity in bacterial communities associated to two highly invasive marine species (genus Asparagopsis). Front. Microbiol. 7:559. https://doi.org/10.3389/fmicb.2016.00559

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cleary DFR, Becking LE, de Voogd NJ, Pires ACC, Polónia ARM, Egas C, Gomes NCM (2013) Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiol. Ecol. 85:465–482. https://doi.org/10.1111/1574-6941.12135

    Article  CAS  PubMed  Google Scholar 

  92. Cleary DFR, Becking LE, Polónia ARM, Freitas RM, Gomes NCM (2015) Composition and predicted functional ecology of mussel-associated bacteria in Indonesian marine lakes. Antonie Van Leeuwenhoek 107:821–834. https://doi.org/10.1007/s10482-014-0375-1

    Article  PubMed  Google Scholar 

  93. Huo YY, Cheng H, Han XF, Jiang XW, Sun C, Zhang XQ, Zhu XF, Liu YF, Li PF, Ni PX, Wu M (2012) Complete genome sequence of Pelagibacterium halotolerans B2 T. J. Bacteriol. 194:197–198. https://doi.org/10.1128/JB.06343-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Neave MJ, Streten-Joyce C, Glasby CJ, McGuinness KA, Parry DL, Gibb KS (2012) The bacterial community associated with the marine polychaete Ophelina sp.1 (Annelida: Opheliidae) is altered by copper and zinc contamination in sediments. Microb. Ecol. 63:639–650. https://doi.org/10.1007/s00248-011-9966-9

    Article  PubMed  Google Scholar 

  95. Turner SJ, Thrush SF, Cummings VJ, Hewitt JE, Wilkinson MR, Williamson RB, Lee DJ (1997) Changes in epifaunal assemblages in response to marina operations and boating activities. Mar. Environ. Res. 43:181–199. https://doi.org/10.1016/0141-1136(96)00086-4

    Article  CAS  Google Scholar 

  96. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576. https://doi.org/10.1038/ismej.2011.116

    Article  CAS  PubMed  Google Scholar 

  97. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC (2014) The family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt ETF (eds) The prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin, pp 439–512

    Chapter  Google Scholar 

  98. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546. https://doi.org/10.1038/nature03911

    Article  CAS  PubMed  Google Scholar 

  99. Blasiak LC, Zinder SH, Buckley DH, Hill RT (2014) Bacterial diversity associated with the tunic of the model chordate Ciona intestinalis. ISME J 8:309–320. https://doi.org/10.1038/ismej.2013.156

    Article  CAS  PubMed  Google Scholar 

  100. Proctor LM (1997) Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquat. Microb. Ecol. 12:105–113. https://doi.org/10.3354/ame012105

    Article  Google Scholar 

  101. Kelly LW, Williams GJ, Barott KL, Carlson CA, Dinsdale EA, Edwards RA, Haas AF, Haynes M, Lim YW, McDole T, Nelson CE, Sala E, Sandin SA, Smith JE, Vermeij MJA, Youle M, Rohwer F (2014) Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl. Acad. Sci. 111:10227–10232. https://doi.org/10.1073/pnas.1403319111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc. Natl. Acad. Sci. 92:2850–2853. https://doi.org/10.1073/pnas.92.7.2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 72:5254–5259. https://doi.org/10.1128/AEM.00554-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sussman M, Loya Y, Fine M, Rosenberg E (2003) The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ. Microbiol. 5:250–255. https://doi.org/10.1046/j.1462-2920.2003.00424.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Reshef, P. Erwin, and E. Sieradzki for their comments and advice. We thank S. Meiri and G. Vered for technical assistance and N. Paz for editorial assistance.

Funding

Funding for this project was provided by the US-Israel Binational Science Foundation (BSF), Jerusalem, Israel (number 2014025), to S.L.L. and N.S.

Author information

Authors and Affiliations

Authors

Contributions

H.D., N.S. and S.L.L. designed this study. H.D., L.N., and J.S.E. collected samples. J.S.E. assisted in sequence processing. H.D. conducted the analyses and led the writing of the manuscript. All authors contributed critically to all drafts and gave final approval for publication.

Corresponding author

Correspondence to Noa Shenkar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic Supplementary Material

ESM 1

(DOCX 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dror, H., Novak, L., Evans, J.S. et al. Core and Dynamic Microbial Communities of Two Invasive Ascidians: Can Host–Symbiont Dynamics Plasticity Affect Invasion Capacity?. Microb Ecol 78, 170–184 (2019). https://doi.org/10.1007/s00248-018-1276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1276-z

Keywords

Navigation