Skip to main content

Genetics and Evolution of Deep-Sea Chemosynthetic Bacteria and Their Invertebrate Hosts

  • Chapter
  • First Online:
The Vent and Seep Biota

Part of the book series: Topics in Geobiology ((TGBI,volume 33))

Abstract

The clams, mussels, and tubeworms that dominate deep-sea chemosynthetic communities obtain most of their nutrition through intracellular symbiotic g-Proteobacteria that oxidize reduced compounds. The modes of symbiont transmission employed by various taxa have profound consequences for genetic, demographic, and evolutionary processes affecting the symbionts and their hosts. Vesicomyid clams transmit endosymbionts vertically via their eggs, a process that leads to symbiont clonality and accelerated rates of evolution. Vertical transmission provides the host with symbiont assurance because dispersing larvae carry the bacteria as they colonize new habitats. The symbionts and their host clams exhibit cospeciation. Vertical transmission for at least 45 million years has contributed to significant genome reduction, as the symbionts have lost almost half their DNA and many of the genes that were required for living in the ambient environment. In contrast, the horizontally transmitted symbionts associated with siboglinid tubeworms do not exhibit genome reduction. Tubeworm larvae are newly infected in each generation when they settle on appropriate substrates. Infection by local bacterial strains is hypothesized to provide the worms with locally optimal symbionts. Symbiont diversity is structured geographically and by habitat type (vent vs seep) and does not parallel host evolution. Less is known about the endosymbionts associated with various species of bathymodiolin mussels. Acquisition of local symbionts occurs in these mussels, but a vertical component of transmission might also exist. Symbiont diversity is structured geographically and not according to host species. The benefits of various symbiont transmission modes also carry associated risks that range from pure enslavement and genomic erosion under strictly vertical transmission to the possible evolution of bacterial strains that cheat the host when mixed symbiont genotypes infect a single host under horizontal transmission. The prevalence of horizontal transmission systems in chemosynthetic environments suggests that the symbionts must have escape strategies that allow them to ­re-inoculate the ambient environment and contribute to their overall fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The quotes denote the dubious assignment of this genus name to these species (Jones and Vrijenhoek 2006).

References

  • Amano K, Kiel S (2007) Fossil vesicomyid bivalves from the North Pacific region. Veliger 49:270–293

    Google Scholar 

  • Amano K, Jenkins RG, Kurihara Y, Kiel S (2008) A new genus for Vesicomya inflata Kanie & Nishida, a lucinid shell convergent with that of vesicomyids, from Cretaceous strata of Hokkaido, Japan. Veliger 50:255–262

    Google Scholar 

  • Andersson SGE (2006) The bacterial world gets smaller. Science 314:259–260

    Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) Genetics of colonizing species. Academic, New York, pp 147–172

    Google Scholar 

  • Barry JP, Greene HG, Orange DL, Baxter CH, Robison BH, Kochevar RE, Nybakken JW, Reed DL, McHugh CM (1996) Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Res I 43:1739–1762

    Google Scholar 

  • Beijerinck MW (1913) Jaarboek van de Koninklijke Akademie v. Wetenschoppen. Muller, Amsterdam, The Netherlands

    Google Scholar 

  • Belotte D, Curien J-B, Maclean RC, Bell G (2003) An experimental test of local adaptation in soil bacteria. Evolution 57:27–36

    Google Scholar 

  • Bergstrom CT, Lachmann M (2003) The Red King effect: when the slowest runner wins the coevolutionary race. Proc Natl Acad Sci USA 100:593–598

    Google Scholar 

  • Berquist DC, Williams FM, Fisher CR (2000) Longevity record for deep-sea invertebrate. Nature 403:499–500

    Google Scholar 

  • Birky CWJ, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527

    Google Scholar 

  • Birky CW Jr, Fuerst P, Maruyama T (1989) Organelle diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627

    Google Scholar 

  • Black MB, Halanych KM, Maas PAY, Hoeh WR, Hashimoto J, Desbruyères D, Lutz RA, Vrijenhoek RC (1997) Molecular systematics of vestimentiferan tube worms from hydrothermal vents and cold-water seeps. Mar Biol 130:141–149

    Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Google Scholar 

  • Boss KJ, Turner RD (1980) The giant white clam from the Galápagos rift, Calyptogena magnifica species novum. Malacologia 20:161–194

    Google Scholar 

  • Braby CE, Rouse GW, Johnson SB, Jones WJ, Vrijenhoek RC (2007) Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California. Deep Sea Res I 54:1773–1791

    Google Scholar 

  • Bright M, Giere O (2005) Microbial symbiosis in Annelida. Symbiosis 38:1–45

    Google Scholar 

  • Cary SC, Giovannoni SJ (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90:5695–5699

    Google Scholar 

  • Cary SC, Felbeck H, Holland ND (1989) Observations on the reproductive biology of the hydrothermal vent tube worm Riftia pachyptila. Mar Ecol Prog Ser 52:89–94

    Google Scholar 

  • Cary SC, Warren W, Anderson E, Giovannoni SJ (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotechnol 2:51–62

    Google Scholar 

  • Cary SC, Cottrell MT, Stein JT, Camacho F, Desbruyères D (1997) Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl Environ Microbiol 63:1124–1130

    Google Scholar 

  • Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Eukaryot Microbiol 32:376–379

    Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    Google Scholar 

  • Cavanaugh CM, McKinness AP, Newton ILG, Stewart FJ (2006) Marine chemosynthetic symbiosis. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 475–507

    Google Scholar 

  • Chevaldonné P, Jollivet D, Desbruyères D, Lutz RA, Vrijenhoek RC (2002) Sister-species of eastern Pacific hydrothermal-vent worms (Ampharetidae, Alvinelidae, Vestimentifera) provide new mitochondrial clock calibration. Cah Biol Mar 43:367–370

    Google Scholar 

  • Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Google Scholar 

  • Clayton DH, Bush SE, Goates BM, Johnson KP (2003) Host defense reinforces host-parasite cospeciation. Proc Natl Acad Sci USA 100:15694–15699

    Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, Von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Van Andel TH (1979) Submarine thermal springs on the Galápagos Rift. Science 203:1073–1083

    Google Scholar 

  • DeChaine EG, Cavanaugh CM (2005) Symbioses of methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae). In: Overmann J (ed) Progress in molecular and subcellular biology: molecular basis of symbiosis. Springer, Berlin, Heidelberg, pp 227–249

    Google Scholar 

  • Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC (2000) Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66:651–658

    Google Scholar 

  • Distel DL, Felbeck H, Cavanaugh CM (1994) Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts. J Mol Evol 38:533–542

    Google Scholar 

  • Doebeli M, Knowlton N (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci USA 95:8676–8680

    Google Scholar 

  • Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev 64:409–434

    Google Scholar 

  • Downie JA, Young JPW (2001) Genome sequencing: the ABC of symbiosis. Nature 412:597–598

    Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Google Scholar 

  • Duperron S, Sibuet M, MacGregor BJ, Kuypers MMM, Fisher CR, Dubilier N (2007) Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. Environ Microbiol 9:1423–1438

    Google Scholar 

  • Duperron S, Laurent MCZ, Gaill F, Gros O (2008a) Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls. FEMS Microbiol Ecol 63:338–349

    Google Scholar 

  • Duperron S, Halary S, Lorion J, Sibuet M, Gaill F (2008b) Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445

    Google Scholar 

  • Elsaied H, Kimura H, Naganuma T (2002) Molecular characterization and endosymbiotic localization of the gene encoding D-ribulose 1, 5-bisphosphate carboxylase–oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome. Microbiology 148:1947–1957

    Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Google Scholar 

  • Endow K, Ohta S (1990) Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae. Mar Ecol Prog Ser 64:309–311

    Google Scholar 

  • Feldman RA, Black MB, Cary CS, Lutz RA, Vrijenhoek RC (1997) Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mar Mol Biol Biotech 6:268–277

    Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA Jr (1993) The ­co-occurance of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol 14:277–289

    Google Scholar 

  • Frank SA (1996) Host-symbiont conflict over mixing of symbiotic lineages. Proc R Soc Lond B 263:33–344

    Google Scholar 

  • Frean MR, Abraham ER (2004) Adaptation and enslavement in endosymbiont-host associations. Phys Rev E 69:051913

    Google Scholar 

  • Freytag JK, Girguis PR, Bergquist DC, Andras JP, Childress JJ, Fisher CR (2001) A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy. Proc Natl Acad Sci USA 98:13408–13413

    Google Scholar 

  • Funk DJ, Helbling L, Wernegreen JJ, Moran NA (2000) Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc R Soc Lond B 267:2517–2521

    Google Scholar 

  • Genkai-Kato M, Yamamura N (1999) Evolution of mutualistic symbiosis without vertical transmission. Theor Popul Biol 55:309–323

    Google Scholar 

  • Goffredi SK, Hurtado LA, Hallam S, Vrijenhoek RC (2003) Evolutionary relationships of deep-sea vent and seep clams (Mollusca: Vesicomyidae) of the ‘pacifica/lepta’ species complex. Mar Biol 142:311–320

    Google Scholar 

  • Goffredi SK, Warén A, Orphan VJ, Van Dover CL, Vrijenhoek RC (2004) Novel forms of structural integration between microbes and a vent gastropod from the Indian Ocean. Appl Environ Microbiol 70:3082–3090

    Google Scholar 

  • Goffredi SK, Jones WJ, Erhlich H, Springer A, Vrijenhoek RC (2008) Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. Environ Microbiol 10:2623–2634

    Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Google Scholar 

  • Gros O, Darrasse A, Durand P, Frenkiel L, Moueza M (1996) Environmental transmission of sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62:2324–2330

    Google Scholar 

  • Gros O, Frenkiel L, Moueza M (1998) Gill filament differentiation and experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Reprod Dev 34:219–231

    Google Scholar 

  • Hafner MS, Nadler SA (1988) Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332:258–259

    Google Scholar 

  • Harmer TL, Rotjan RD, Nussbaumer AD, Bright M, Ng AW, DeChaine EG, Cavanaugh CM (2008) Free-living tube worm endosymbionts found at deep-sea vents. Appl Environ Microbiol 74:3895–3898

    Google Scholar 

  • Harvey RW, Garabedian SP (1991) Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environ Sci Technol 25:178–185

    Google Scholar 

  • Herry A, Le Pennec M (1986) Ultrastructure de la gonade d’un Mytilidae hydrothermal profond de la ride du Pacifique oriental. Haliotis 16:295–307

    Google Scholar 

  • Huelsenbeck JP, Rannala B, Yang Z (1997) Statistical tests of host-parasite cospeciation. Evolution 51:410–419

    Google Scholar 

  • Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond B 272:1525–1534

    Google Scholar 

  • Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC (2003) Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69:2058–2064

    Google Scholar 

  • Jiggins FM, JHGvd S, Hurst GDD, Majerus MEN (2001) Recombination confounds interpretations of Wolbachia evolution. Proc R Soc Lond B 268:1423–1427

    Google Scholar 

  • Jones ML (1981) Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galápagos Rift geothermal vents (Pogonophora). Proc Biol Soc Wash 93:1295–1313

    Google Scholar 

  • Jones WJ, Vrijenhoek RC (2006) Evolutionary relationships within the “Bathymodiolus” childressi group. Cah Biol Mar 47:403–407

    Google Scholar 

  • Jones WJ, Won YJ, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC (2006) Evolution of habitat use by deep-sea mussels. Mar Biol 148:841–851

    Google Scholar 

  • Kádár E, Bettencourt R, Costa V, Serrão Santos R, Lobo-da-Cunha A, Dando P (2005) Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. J Exp Mar Biol Ecol 318:99–110

    Google Scholar 

  • Kanie Y, Nishida T (2000) New species of chemosynthetic bivalves, Vesicomya and Acharax, from the Cretaceous deposits of northwestern Hokkaido. Sci Rep Yokosuka City Mus 47:79–84

    Google Scholar 

  • Kanie Y, Yoshikawa Y, Sakai T, Takahash T (1993) The Cretaceous chemosynthetic cold water-dependent molluscan community discovered from Mikasa City, Central Hokkaido. Sci Rep Yokosuka City Mus 41:31–132

    Google Scholar 

  • Kenk VC, Wilson BR (1985) A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galápagos Rift zone. Malacologia 26:253–271

    Google Scholar 

  • Kiel S, Dando PR (2009) Chaetopterid tubes from vent and seep sites: implications for fossil record and evolutionary history. Acta Palaeontol Pol 54(3):443–448

    Google Scholar 

  • Kiel S, Amano K, Jenkins RG (2008) Bivalves from Cretaceous cold-seep deposits on Hokkaido, Japan. Acta Palaeontol Pol 53:525–537

    Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81

    Google Scholar 

  • Krueger DM, Gustafson RG, Cavanaugh CM (1996) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull 190:195–202

    Google Scholar 

  • Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T (2007) Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol 17:881–886

    Google Scholar 

  • Lalou C, Brichet E (1982) Ages and implications of East Pacific Rise sulfide deposits at 21°N. Nature 300:169–171

    Google Scholar 

  • Lalou C, Reyss J-L, Brichet E, Arnold M, Thompson G, Fouquet Y, Rona P (1993) New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited. J Geophys Res 98:9705–9713

    Google Scholar 

  • Lambert JD, Moran NA (1998) Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria. Proc Natl Acad Sci USA 95:4458–4462

    Google Scholar 

  • Le Pennec M, Diouris M, Herry A (1988) Endocytosis and lysis of bacteria in gill epithelium of Bathymodiolus thermophilus, Thyasira flexuosa and Lucinella divaricata (Bivalve, Molluscs). J Shell Res 7:483–489

    Google Scholar 

  • Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588

    Google Scholar 

  • Little CTS, Danelian T, Herrington RJ, Haymon R (2004) Early Jurassic hydrothermal vent ­community from the Franciscan complex, California. J Paleontol 78:542–559

    Google Scholar 

  • Markert S, Arndt C, Felbeck H, Becher D, Sievert SM, Hugler M, Albrecht D, Robidart J, Bench S, Feldman RA, Hecker M, Schweder T (2007) Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315:247–250

    Google Scholar 

  • Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favorable gene. Gene Res (Camb) 23:23–35

    Google Scholar 

  • McMullin E, Hourdez S, Schaeffer SW, Fisher CR (2003) Phylogeny and biogeography of deep sea vestimentiferans and their bacterial symbionts. Symbiosis 34:1–41

    Google Scholar 

  • Micheli F, Peterson CH, Mullineaux LS, Fisher CR, Mills SW, Sancho G, Johnson GA, Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal vents. Ecol Monogr 72:365–382

    Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878

    Google Scholar 

  • Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586

    Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171

    Google Scholar 

  • Moran NA, McLaughlin HJ, Sorek R (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382

    Google Scholar 

  • Moya A, Pereto J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9:218–229

    Google Scholar 

  • Muller HJ (1964) The relation of mutation to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  • Naganuma T, Naka J, Okayama Y, Minami A, Horikoshi K (1997) Morphological diversity of the microbial population in a vestimentiferan tubeworm. J Mar Biotech 53:193–197

    Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Google Scholar 

  • Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl DM (ed) Microbiology of deep sea hydrothermal vent habitats. CRC Press, Boca Raton, FL, pp 125–167

    Google Scholar 

  • Nelson K, Fisher CR (2000) Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis 28:1–15

    Google Scholar 

  • Nelson DC, Waterbury JB, Jannasch HW (1984) DNA base composition and genome size of the prokaryotic symbiont in Riftia pachyptila (Pogonophora). FEMS Microbiol Lett 24:267–271

    Google Scholar 

  • Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ, Fisher MC, Fontanez KM, Lau E, Stewart FJ, Richardson PM, Barry KW, Saunders E, Detter JC, Wu D, Eisen JA, Cavanaugh CM (2007) The Calyptogena magnifica chemoautotrophic symbiont genome. Science 315:998–1000

    Google Scholar 

  • Newton ILG, Girguis PR, Cavanaugh CM (2008) Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts. BMC Genomics 9:585

    Google Scholar 

  • Nieberding CM, Durette-Desset M-C, Vanderpoorten A, Casanova JC, Ribas A, Deffontaine V, Feliu C, Morand S, Libois R, Michaux JR (2008) Geography and host biogeography matter for understanding the phylogeography of a parasite. Mol Phylogenet Evol 47:538–554

    Google Scholar 

  • Nishiguchi MK, Ruby EG, McFall-Ngai MJ (1998) Competitive dominance among strains of luminous bacteria provides an unusual evidence for parallel evolution in sepiolid squid-vibrio symbioses. Appl Environ Microbiol 64:3209–3213

    Google Scholar 

  • Nussbaumer AD, Fisher CR, Bright M (2006) Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441:345–348

    Google Scholar 

  • Nyholm SV, McFall-Ngai MJ (2004) The winnowing: establishing the squid–Vibrio symbiosis. Nat Rev Microbiol 2:632–642

    Google Scholar 

  • O’Mullan GD, Maas PAY, Lutz RA, Vrijenhoek RC (2001) A hybrid zone between hydrothermal vent mussels (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Mol Ecol 10:2819–2831

    Google Scholar 

  • Ohta T (1987) Very slightly deleterious mutations and the molecular clock. J Mol Evol 26:1–6

    Google Scholar 

  • Page HM, Fisher CR, Childress JJ (1990) Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts. Mar Biol 104:251–257

    Google Scholar 

  • Pailleret M, Haga T, Petit P, Prive-Gill C, Saedlou N, Gaill F, Zbinden M (2007) Sunken wood from the Vanuatu Islands: identification of wood substrates and preliminary description of associated fauna. Mar Ecol 28:233–241

    Google Scholar 

  • Pál C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440:667–670

    Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    Google Scholar 

  • Peek A, Gustafson R, Lutz R, Vrijenhoek R (1997) Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): results from the mitochondrial cytochrome oxidase subunit I. Mar Biol 130:151–161

    Google Scholar 

  • Peek AS, Vrijenhoek RC, Gaut BS (1998a) Accelerated evolutionary rate in sulfur-oxidizing endosymbiotic bacteria associated with the mode of symbiont transmission. Mol Biol Evol 15:1514–1523

    Google Scholar 

  • Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC (1998b) Cospeciation of chemoautotrophic bacteria and deep-sea clams. Proc Natl Acad Sci USA 95:9962–9966

    Google Scholar 

  • Perez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A (2006) A small microbial genome: the end of a long symbiotic relationship? Science 314:312–313

    Google Scholar 

  • Reid SD, Selander RK, Whittam TS (1999) Sequence diversity of flagellin (fliC) alleles in pathogenic Escherichia coli. J Bacteriol 181:153–160

    Google Scholar 

  • Rispe C, Moran NA (2000) Accumulation of deleterious mutations in endosymbionts: Muller’s ratchet with two levels of selection. Am Nat 156:425–441

    Google Scholar 

  • Robidart JC, Benc SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterl T, Allen EE, Felbeck H (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10:727–737

    Google Scholar 

  • Salerno JL, Macko SA, Hallam SJ, Bright M, Won Y-J, McKiness Z, Van Dover CL (2005) Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol Bull 208:145–155

    Google Scholar 

  • Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24:647–660

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45:517–567

    Google Scholar 

  • Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integr Comp Biol 42:369–380

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Southward EC (1988) Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. J Mar Biol Assoc UK 68:465–487

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA: DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Google Scholar 

  • Stewart FJ, Cavanaugh CM (2009) Pyrosequencing analysis of endosymbiont population structure: co-occurrence of divergent symbiont lineages in a single vesicomyid host clam. Environ Microbiol 11(8):2136–2147

    Google Scholar 

  • Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–448

    Google Scholar 

  • Stewart FJ, Young CR, Cavanaugh CM (2008) Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Mol Biol Evol 25:673–687

    Google Scholar 

  • Stewart FJ, Young CR, Cavanaugh CM (2009) Evidence for homologous recombination in intracellular chemosynthetic clam symbionts. Mol Biol Evol 26:1391–1404

    Google Scholar 

  • Tamames J, Gil R, Latorre A, Pereto J, Silva F, Moya A (2007) The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol 7:181

    Google Scholar 

  • Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol 16:R1016–R1017

    Google Scholar 

  • Trask JL, Van Dover CL (1999) Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp.) from the Lucky Strike hydrothermal vent field, Mid-Atlantic Ridge. Limnol Oceanogr 44:334–343

    Google Scholar 

  • Tunnicliffe V, McArthur AG, Mchugh D (1998) A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34:353–442

    Google Scholar 

  • Urakawa H, Dubilier N, Fujiwara Y, Cunningham DE, Kojima S, Stahl DA (2005) Hydrothermal vent gastropods from the same family (Provannidae) harbour epsilon- and gamma-proteobacterial endosymbionts. Environ Microbiol 7:750–754

    Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257

    Google Scholar 

  • Van Dover CL, Ward ME, Scott JL, Underdown J, Anderson B, Gustafson C, Whalen M, Carnegie RB (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar Ecol 28:54–62

    Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theor 1:1–30

    Google Scholar 

  • Vetter RD (1991) Symbiosis and the evolution of novel trophic strategies: thiotrophic organisms at hydrothermal vents. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge, MA, pp 219–245

    Google Scholar 

  • Vrijenhoek RC (1997) Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J Hered 88:285–293

    Google Scholar 

  • Vrijenhoek RC, Duhaime M, Jones WJ (2007) Subtype variation among bacterial endosymbionts of tubeworms (Annellida: Siboglinidae) from the Gulf of California. Biol Bull 212:180–184

    Google Scholar 

  • Wernegreen JJ, Moran NA (1999) Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein coding genes. Mol Biol Evol 16:83–97

    Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301:976–978

    Google Scholar 

  • Won Y-J, Hallam SJ, O’Mullan GD, Vrijenhoek RC (2003a) Cytonuclear disequilibrium in a hybrid zone involving deep-sea hydrothermal vent mussels of the genus Bathymodiolus. Mol Ecol 12:3185–3190

    Google Scholar 

  • Won Y-J, Hallam SJ, O’Mullan GD, Pan IL, Buck KR, Vrijenhoek RC (2003b) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl Environ Microbiol 69:6785–6792

    Google Scholar 

  • Won Y-J, Jones WJ, Vrijenhoek RC (2008) Absence of co-speciation between deep-sea mytilids and their thiotrophic endosymbionts. J Shell Res 27:129–138

    Google Scholar 

  • Young CR, Fujio S, Vrijenhoek RC (2008) Directional dispersal between mid-ocean ridges: deep-ocean circulation and gene flow in Ridgeia piscesae. Mol Ecol 17:1718–1731

    Google Scholar 

  • Zbinden M, Shillito B, Le Bris N, de Villardi de Montlaur C, Roussel E, Guyot F, Gaill F, Cambon-Bonavita M-A (2008) New insights on the metabolic diversity among the epibiotic microbial community of the hydrothermal shrimp Rimicaris exoculata. J Exp Mar Biol Ecol 359:131–140

    Google Scholar 

Download references

Acknowledgements

I wish to thank the Frank Stewart, Shana Goffredi, Monika Bright, Julie Robidart, Steffen Kiel, Julio Harvey, Shannon Johnson and an anonymous reviewer for providing information and criticisms that improved the scope of this manuscript. Funding was provided by grants from the David and Lucile Packard Foundation to the Monterey Bay Research Institute and the National Science Foundation (OCE 0241613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Vrijenhoek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vrijenhoek, R.C. (2010). Genetics and Evolution of Deep-Sea Chemosynthetic Bacteria and Their Invertebrate Hosts. In: Kiel, S. (eds) The Vent and Seep Biota. Topics in Geobiology, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9572-5_2

Download citation

Publish with us

Policies and ethics