Skip to main content
Log in

Cellulase−Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil microorganisms are important mediators of carbon cycling in nature. Although cellulose- and hemicellulose-degrading bacteria have been isolated from Algerian ecosystems, the information on the composition of soil bacterial communities and thus the potential of their members to decompose plant residues is still limited. The objective of the present study was to describe and compare the bacterial community composition in Algerian soils (crop, forest, garden, and desert) and the activity of cellulose- and hemicellulose-degrading enzymes. Bacterial communities were characterized by high-throughput 16S amplicon sequencing followed by the in silico prediction of their functional potential. The highest lignocellulolytic activity was recorded in forest and garden soils whereas activities in the agricultural and desert soils were typically low. The bacterial phyla Proteobacteria (in particular classes α–proteobacteria, δ–proteobacteria, and γ–proteobacteria), Firmicutes, and Actinobacteria dominated in all soils. Forest and garden soils exhibited higher diversity than agricultural and desert soils. Endocellulase activity was elevated in forest and garden soils. In silico analysis predicted higher share of genes assigned to general metabolism in forest and garden soils compared with agricultural and arid soils, particularly in carbohydrate metabolism. The highest potential of lignocellulose decomposition was predicted for forest soils, which is in agreement with the highest activity of corresponding enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, Baldrian P (2017) Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5:1–12. https://doi.org/10.1186/s40168-017-0340-0

    Article  Google Scholar 

  2. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139. https://doi.org/10.3390/biom4010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34:663–675. https://doi.org/10.1007/s10529-011-0830-2

    Article  CAS  PubMed  Google Scholar 

  4. D’haeseleer P, Gladden JM, Allgaier M et al (2013) Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS One 8:e68465. https://doi.org/10.1371/journal.pone.0068465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cong J, Yang Y, Liu X, Lu H, Liu X, Zhou J, Li D, Yin H, Ding J, Zhang Y (2015) Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci Rep 5:1–11. https://doi.org/10.1038/srep10007

    Article  CAS  Google Scholar 

  6. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. https://doi.org/10.1128/AEM.00335-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  8. López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P (2016a) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:1–12. https://doi.org/10.1186/s13068-016-0518-x

    Article  CAS  Google Scholar 

  9. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016b) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:1–12. https://doi.org/10.1038/srep25279

    Article  CAS  Google Scholar 

  10. Pathan SI, Žifčáková L, Ceccherini MT, Pantani OL, Větrovský T, Baldrian P (2017) Soil biology & biochemistry seasonal variation and distribution of total and active microbial community of β-glucosidase encoding genes in coniferous forest soil. Soil Biol Biochem 105:71–80. https://doi.org/10.1016/j.soilbio.2016.11.003

    Article  CAS  Google Scholar 

  11. Bhange VP, William P, Sharma A et al (2015) Pretreatment of garden biomass using Fenton’s reagent: influence of Fe2+ and H2O2 concentrations on lignocellulose degradation. J Environ Health Sci Eng 13:1–7. https://doi.org/10.1186/s40201-015-0167-1

    Article  CAS  Google Scholar 

  12. Menendez E, García-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. AIMS Bioeng 2:163–182. https://doi.org/10.3934/bioeng.2015.3.163

    Article  CAS  Google Scholar 

  13. Song C, Li M, Jia X, Wei Z, Zhao Y, Xi B, Zhu C, Liu D (2014) Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure. Microb Biotechnol 7:424–433. https://doi.org/10.1111/1751-7915.12131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611. https://doi.org/10.3390/biom3030597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Houfani AA, Větrovský T, Baldrian P, Benallaoua S (2017) Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis. World J Microbiol Biotechnol 33:1–14. https://doi.org/10.1007/s11274-016-2198-x

    Article  CAS  Google Scholar 

  16. Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautová V, Hofrichter M, Baldrian P (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol Biochem 39:2651–2660. https://doi.org/10.1016/j.soilbio.2007.05.023

    Article  CAS  Google Scholar 

  17. Baldrian P (2009) Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ 55:370–378. https://doi.org/10.1007/s11104-008-9731-0

    Article  CAS  Google Scholar 

  18. Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907. https://doi.org/10.1128/AEM.02161-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108 Suppl:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  Google Scholar 

  20. Caporaso JG, Lauber CL, W a W et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037. https://doi.org/10.1007/s00374-013-0801-y

    Article  Google Scholar 

  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  23. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  PubMed  Google Scholar 

  28. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettache A, Messis A, Copinet E et al (2017) Isolation, screening of endoglucanase producing actinomycetes and identification of the potent isolate B-PNG23. Environ Eng Manag J 16:2231–2238

    Article  CAS  Google Scholar 

  30. Boucherba N, Benallaoua S, Copinet E et al (2011) Production and partial characterization of xylanase produced by Jonesia denitrificans isolated in Algerian soil. Process Biochem 46:519–525. https://doi.org/10.1016/j.procbio.2010.10.003

    Article  CAS  Google Scholar 

  31. Bouanane-Darenfed A, Boucherba N, Bouacem K et al (2016) Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1T. Carbohydr Res 419:60–68. https://doi.org/10.1016/j.carres.2015.10.013

    Article  CAS  Google Scholar 

  32. Navrátilová D, Větrovský T, Baldrian P (2017) Spatial heterogeneity of cellulolytic activity and fungal communities within individual decomposing Quercus petraea leaves. Fungal Ecol 27:125–133. https://doi.org/10.1016/j.funeco.2016.08.012

    Article  Google Scholar 

  33. Papa S, Pellegrino A, Ferrigno A, Fioretto A (2007) Microbial activity of soil with different plant cover in Mediterranean area. Stud Trentini Sci Nat Acta Biol 83:227–231

    Google Scholar 

  34. Yeager CM, Gallegos-Graves LV, Dunbar J, Hesse CN, Daligault H, Kuske CR (2017) Polysaccharide degradation capability of Actinomycetales soil isolates from a semiarid grassland of the Colorado Plateau. Appl Environ Microbiol 83:1–19. https://doi.org/10.1128/AEM.03020-16

    Article  Google Scholar 

  35. Větrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 9:e89108. https://doi.org/10.1371/journal.pone.0089108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stanley D, Rejzek M, Naested H, Smedley M, Otero S, Fahy B, Thorpe F, Nash RJ, Harwood W, Svensson B, Denyer K, Field RA, Smith AM (2011) The role of alpha-glucosidase in germinating barley grains. Plant Physiol 155:932–943. https://doi.org/10.1104/pp.110.168328

    Article  CAS  PubMed  Google Scholar 

  37. Maharjan M, Sanaullah M, Razavi BS, Kuzyakov Y (2017) Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Appl Soil Ecol 113:22–28. https://doi.org/10.1016/j.apsoil.2017.01.008

    Article  Google Scholar 

  38. Shi H, Li X, Gu H, Zhang Y, Huang Y, Wang L, Wang F (2013) Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol Biofuels 6:1–10. https://doi.org/10.1186/1754-6834-6-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kielak AM, Cretoiu MS, Semenov AV, Sørensen SJ, van Elsas JD (2013) Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Appl Environ Microbiol 79:263–272. https://doi.org/10.1128/AEM.02546-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D, Lemos LN, Silva GMM, Moura LMS, Epamino GWC, Digiampietri LA, Lombardi KC, Ramos PL, Quaggio RB, de Oliveira JCF, Pascon RC, Cruz JB, da Silva AM, Setubal JC (2016) Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep 6:1–13. https://doi.org/10.1038/srep38915

    Article  CAS  Google Scholar 

  41. Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol Biochem 90:87–100. https://doi.org/10.1016/j.soilbio.2015.07.021

    Article  CAS  Google Scholar 

  42. Bautista-Cruz A, Ortiz-Hernández YD (2015) Hydrolytic soil enzymes and their response to fertilization: a short review. Comun Sci 6:255–262. https://doi.org/10.14295/CS.v6i3.962

    Article  CAS  Google Scholar 

  43. Knight TR, Dick RP (2004) Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol Biochem 36:2089–2096. https://doi.org/10.1016/j.soilbio.2004.06.007

    Article  CAS  Google Scholar 

  44. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728. https://doi.org/10.1128/AEM.72.3.1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vikram S, Guerrero LD, Makhalanyane TP, le PT, Seely M, Cowan DA (2016) Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ Microbiol 18:1875–1888. https://doi.org/10.1111/1462-2920.13088

    Article  CAS  PubMed  Google Scholar 

  46. Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyperarid Atacama desert soils. J Geophys Res Biogeosci 112:1–9. https://doi.org/10.1029/2006JG000311

    Article  CAS  Google Scholar 

  47. Felsmann K, Baudis M, Gimbel K, Kayler ZE, Ellerbrock R, Bruehlheide H, Bruckhoff J, Welk E, Puhlmann H, Weiler M, Gessler A, Ulrich A (2015) Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. PLoS One 10:1–24. https://doi.org/10.1371/journal.pone.0122539

    Article  CAS  Google Scholar 

  48. Masse J, Prescott CE, Renaut S, Terrat Y, Grayston SJ (2017) Plant community and nitrogen deposition as drivers of alpha and beta diversities of prokaryotes in reconstructed oil sand soils and natural boreal forest soils. Appl Environ Microbiol 83:1–17. https://doi.org/10.1128/AEM.03319-16

    Article  Google Scholar 

  49. Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M (2010) Bacterial diversity at different stages of the composting process. BMC Microbiol 10:1–11. https://doi.org/10.1186/1471-2180-10-94

    Article  CAS  Google Scholar 

  50. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016. https://doi.org/10.1128/MMBR.00063-16

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jorquera MA, Maruyama F, Ogram AV, Navarrete OU, Lagos LM, Inostroza NG, Acuña JJ, Rilling JI, de la Luz Mora M (2016) Rhizobacterial community structures associated with native plants grown in Chilean extreme environments. Microb Ecol 72:633–646. https://doi.org/10.1007/s00248-016-0813-x

    Article  CAS  PubMed  Google Scholar 

  52. Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, Campos DC, Crowley DE, Richardson AE, Mora ML (2014) Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol Fertil Soils 50:1141–1153. https://doi.org/10.1007/s00374-014-0935-6

    Article  Google Scholar 

  53. Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, Crowley DE (2012) Plant growth-promoting Rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017. https://doi.org/10.1007/s00248-012-0071-5

    Article  PubMed  Google Scholar 

  54. Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000. https://doi.org/10.1371/journal.pone.0017000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crits-Christoph A, Robinson CK, Barnum T, Fricke W, Davila AF, Jedynak B, McKay CP, DiRuggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:1–13. https://doi.org/10.1186/2049-2618-1-28

    Article  Google Scholar 

  56. Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT (2017) Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama desert. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-08937-4

    Article  CAS  Google Scholar 

  57. Pulschen AA, Bendia AG, Fricker AD, Pellizari VH, Galante D, Rodrigues F (2017) Isolation of uncultured bacteria from Antarctica using long incubation periods and low nutritional media. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.01346

    Article  Google Scholar 

  58. Suleiman AKA, Manoeli L, Boldo JT, Pereira MG, Roesch LFW (2013) Shifts in soil bacterial community after eight years of land-use change. Syst Appl Microbiol 36:137–144. https://doi.org/10.1016/j.syapm.2012.10.007

    Article  PubMed  Google Scholar 

  59. Tecon R, Or D (2017) Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 41:599–623. https://doi.org/10.1093/femsre/fux039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20. https://doi.org/10.1016/j.copbio.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  61. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  62. Wang R, Zhang H, Sun L, Qi G, Chen S, Zhao X (2017) Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-00472-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zeng Q, Dong Y, An S (2016) Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau, China. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0152894

    Article  CAS  Google Scholar 

  64. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Chen L, Wen H, Zhou T, Zhang T, Gao X (2014) 454 Pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas. J Microbiol Biotechnol 24:313–323. https://doi.org/10.4014/jmb.1309.09001

    Article  CAS  PubMed  Google Scholar 

  66. Alessi AM, Bird SM, Bennett JP, Oates NC, Li Y, Dowle AA, Polikarpov I, Young JPW, McQueen-Mason SJ, Bruce NC (2017) Revealing the insoluble metasecretome of lignocellulose-degrading microbial communities. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-02506-5

    Article  CAS  Google Scholar 

  67. Darjany LE, Whitcraft CR, Dillon JG (2014) Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 5:1–9. https://doi.org/10.3389/fmicb.2014.00263

    Article  Google Scholar 

  68. Heiss-Blanquet S, Fayolle-Guichard F, Lombard V, Hébert A, Coutinho PM, Groppi A, Barre A, Henrissat B (2016) Composting-like conditions are more efficient for enrichment and diversity of organisms containing cellulase-encoding genes than submerged cultures. PLoS One 11:1–22. https://doi.org/10.1371/journal.pone.0167216

    Article  CAS  Google Scholar 

  69. Lopes LD, Pereira e Silva M d C, Andreote FD (2016) Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol 7:1–13. https://doi.org/10.3389/fmicb.2016.01341

    Article  Google Scholar 

  70. Mickan BS, Abbott LK, Fan J, Hart MM, Siddique KHM, Solaiman ZM, Jenkins SN (2017) Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fertil Soils 54:55–70. https://doi.org/10.1007/s00374-017-1238-5

    Article  Google Scholar 

  71. Wang K, Mao H, Li X (2018) Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresour Technol 249:527–535. https://doi.org/10.1016/j.biortech.2017.10.034

    Article  CAS  PubMed  Google Scholar 

  72. Martins LF, Antunes LP, Pascon RC, de Oliveira JCF, Digiampietri LA, Barbosa D, Peixoto BM, Vallim MA, Viana-Niero C, Ostroski EH, Telles GP, Dias Z, da Cruz JB, Juliano L, Verjovski-Almeida S, da Silva AM, Setubal JC (2013) Metagenomic analysis of a tropical composting operation at the São Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS One 8:e61928. https://doi.org/10.1371/journal.pone.0061928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiménez DJ, Dini-andreote F, Van Elsas JD (2014) Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels 7:1–17. https://doi.org/10.1186/1754-6834-7-92

    Article  Google Scholar 

  74. Horwath W (2015) Chapter 12 Carbon Cycling: The Dynamics and Formation of Organic Matter. In: Soil Microbiology, Ecology and Biochemistry (4th Edition) Elsevier, pp 339–382. https://doi.org/10.1016/B978-0-12-415955-6.00012-8

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the Ministry of Higher Education and Scientific Research (Algeria) and the General Direction for Scientific Research and Technological Development (Algeria). This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic (LM2015055). R.G. Beiko acknowledges the support of the Canada Research Chairs program. M.A. Jorquera acknowledges the project Fondecyt no. 1160302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milko A. Jorquera.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houfani, A.A., Větrovský, T., Navarrete, O.U. et al. Cellulase−Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems. Microb Ecol 77, 713–725 (2019). https://doi.org/10.1007/s00248-018-1251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1251-8

Keywords

Navigation