Chen I-C, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432
CAS
Article
PubMed
Google Scholar
Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175. doi:10.2307/2937039
Article
Google Scholar
Holzinger B, Hülber K, Camenisch M, Grabherr G (2007) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195:179–196. doi:10.1007/s11258-007-9314-9
Article
Google Scholar
Dolezal J, Homma K, Takahashi K et al (2008) Primary succession following deglaciation at Koryto Glacier Valley, Kamchatka. Arct Antarct Alp Res 40:309–322. doi:10.1657/1523-0430(06-123)[DOLEZAL]2.0.CO;2
Article
Google Scholar
Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands. Cambridge University Press, Cambridge
Google Scholar
Schütte UME, Abdo Z, Bent SJ et al (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 3:1258–1268. doi:10.1038/ismej.2009.71
Article
PubMed
PubMed Central
Google Scholar
Zumsteg A, Luster J, Göransson H et al (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564. doi:10.1007/s00248-011-9991-8
Article
PubMed
Google Scholar
Nemergut DR, Anderson SP, Cleveland CC et al (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122. doi:10.1007/s00248-006-9144-7
Article
PubMed
Google Scholar
Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol 7:337–347. doi:10.1111/j.1462-2920.2005.00698.x
CAS
Article
PubMed
Google Scholar
Aschenbach K, Conrad R, Řeháková K et al (2013) Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front Microbiol 4:359. doi:10.3389/fmicb.2013.00359
Article
PubMed
PubMed Central
Google Scholar
Türk R, Gärtner G (2003) Biological soil crusts of the subalpine, alpine, and nival areas in the Alps. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer-Verlag, Berlin, pp 3–30
Google Scholar
Sattin SR, Cleveland CC, Hood E et al (2010) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47:673–681. doi:10.1007/s12275-009-0194-7
Article
Google Scholar
Schmidt SK, Reed SC, Nemergut DR et al (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B 275:2793–2802. doi:10.1098/rspb.2008.0808
CAS
Article
PubMed
PubMed Central
Google Scholar
de Richter DB, Oh N-H, Fimmen R, Jackson J (2007) The rhizosphere and soil formation. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier Academic, Burlington, pp 179–200
Chapter
Google Scholar
Klimeš L, Doležal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the Western Himalayas. Ecography 33:590–596. doi:10.1111/j.1600-0587.2009.05967.x
Google Scholar
Körner C (2011) Coldest places on earth with angiosperm plant life. Alp Bot 121:11–22. doi:10.1007/s00035-011-0089-1
Article
Google Scholar
Dvorský M, Altman J, Kopecký M et al (2015) Vascular plants at extreme elevations in eastern Ladakh, northwest Himalayas. Plant Ecol Divers 8:571–584. doi:10.1080/17550874.2015.1018980
Article
Google Scholar
Manoharachary C, Mukerji KG (2006) Rhizosphere biology—an overview. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Heidelberg, pp 1–16
Singh G, Mukerji KG (2006) Root exudates as determinant of rhizospheric microbial biodiversity. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Heidelberg, pp 39–54
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109
CAS
Article
PubMed
Google Scholar
Hawkes CV, DeAngelis KM, Firestone MK (2007) Root interactions with soil microbial communities and processes. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier Academic, Burlington, pp 179–200
Google Scholar
Dvorský M, Doležal J, de Bello F, Klimešová JK (2011) Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl Veg Sci 14:132–147. doi:10.1111/j.1654-109X.2010.01103.x
Article
Google Scholar
Bolch T, Kulkarni A, Kääb A et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314. doi:10.1126/science.1215828
CAS
Article
PubMed
Google Scholar
Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the twentieth century. Clim Chang 85:159–177. doi:10.1007/s10584-006-9196-1
Article
Google Scholar
Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7:e36741. doi:10.1371/journal.pone.0036741
CAS
Article
PubMed
PubMed Central
Google Scholar
Klimešová J, Doležal J, Dvorský M et al (2011) Clonal growth forms in eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobot 46:191–217. doi:10.1007/s12224-010-9076-3
Article
Google Scholar
Vlček V (2010) Calibration of the water content sensor TMS for mineral and organic soils. BSc thesis, České vysoké učení technické
Farquhar G, O’Leary M, Berry J (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol 9:121–137
CAS
Google Scholar
Chlumská Z, Janeček Š, Doležal J (2013) How to preserve plant samples for carbohydrate analysis? Test of suitable methods applicable in remote areas. Folia Geobot 49:1–15. doi:10.1007/s12224-013-9153-5
Article
Google Scholar
Schweingruber F, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79:195–415
Google Scholar
Wheeler EA, Baas P, Gasson PE (1989) IAWA list of microscopic features for hardwood ident ification: with an appendix on non-anatomical information. IAWA Bull 10:219–332
Article
Google Scholar
Schweingruber FH, Börner A, Schulze E-D (2011) Atlas of stem anatomy in herbs, shrubs and trees: volume 1. Springer Science & Business Media, Dordrecht
Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x
Article
Google Scholar
Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862. doi:10.1038/ismej.2011.141
CAS
Article
PubMed
Google Scholar
Angel R (2012) Total nucleic acid extraction from soil. Protoc Exch. doi:10.1038/protex.2011.204
Google Scholar
Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701. doi:10.1128/AEM.00683-12
Article
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:75377541. doi:10.1128/AEM.01541-09
Article
Google Scholar
Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. doi:10.1093/bioinformatics
CAS
Article
PubMed
PubMed Central
Google Scholar
Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar
CAS
Article
PubMed
PubMed Central
Google Scholar
Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics
CAS
Article
PubMed
PubMed Central
Google Scholar
Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898. doi:10.1111/j.1462-2920.2010.02193.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77:3219–3226. doi:10.1128/AEM.02810-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Bunge J (2011) Estimating the number of species with catchall. Pac Symp Biocomput 2011:121–130
Google Scholar
R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Spiess A-N (2014) Propagate: propagation of uncertainty. R package
Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE 7:e30126. doi:10.1371/journal.pone.0030126
CAS
Article
PubMed
PubMed Central
Google Scholar
Morgan M (2014) Dirichlet multinomial: Dirichlet-multinomial mixture model machine learning for microbiome data. R package
Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Science & Business Media, Dordrecht
Valluru R, den Ende WV (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916. doi:10.1093/jxb/ern164
CAS
Article
PubMed
Google Scholar
Teixeira LCRS, Peixoto RS, Cury JC et al (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001. doi:10.1038/ismej.2010.35
Article
PubMed
Google Scholar
Edwards J, Johnson C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112:E911–E920. doi:10.1073/pnas.1414592112
CAS
Article
PubMed
PubMed Central
Google Scholar
Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110:6548–6553. doi:10.1073/pnas.1302837110
CAS
Article
PubMed
PubMed Central
Google Scholar
Nacke H, Thürmer A, Wollherr A et al (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6:e17000. doi:10.1371/journal.pone.0017000
CAS
Article
PubMed
PubMed Central
Google Scholar
Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290
CAS
PubMed
PubMed Central
Google Scholar
Angel R, Conrad R (2013) Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol 15:2799–2815. doi:10.1111/1462-2920.12140
CAS
PubMed
Google Scholar
Neilson JW, Quade J, Ortiz M et al (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–566. doi:10.1007/s00792-012-0454-z
Article
PubMed
Google Scholar
Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113. doi:10.1111/1574-6941.12143
CAS
Article
PubMed
Google Scholar
Makhalanyane TP, Valverde A, Gunnigle E et al (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221. doi:10.1093/femsre/fuu011
Article
PubMed
Google Scholar
Mapelli F, Marasco R, Rizzi A et al (2010) Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on Arctic moraines. Microb Ecol 61:438–447. doi:10.1007/s00248-010-9758-7
Article
PubMed
Google Scholar
Fierer N, Strickland MS, Liptzin D et al (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249. doi:10.1111/j.1461-0248.2009.01360.x
Article
PubMed
Google Scholar
Rime T, Hartmann M, Brunner I et al (2015) Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol Ecol 24:1091–1108. doi:10.1111/mec.13051
CAS
Article
PubMed
Google Scholar
Yarwood S, Wick A, Williams M, Daniels WL (2014) Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis. Microb Ecol 69:383–394. doi:10.1007/s00248-014-0523-1
Article
PubMed
Google Scholar
Knelman JE, Legg TM, O’Neill SP et al (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180. doi:10.1016/j.soilbio.2011.12.001
CAS
Article
Google Scholar
Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708. doi:10.1016/j.soilbio.2006.09.020
CAS
Article
Google Scholar
Prestel E, Regeard C, Salamitou S et al (2013) The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley Desert. Antonie Van Leeuwenhoek 103:1329–1341. doi:10.1007/s10482-013-9914-4
Article
PubMed
Google Scholar
Stres B, Sul WJ, Murovec B, Tiedje JM (2013) Recently delaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere. PLoS ONE 8:e76440. doi:10.1371/journal.pone.0076440
CAS
Article
PubMed
PubMed Central
Google Scholar
Bakker PAHM, Berendsen RL, Doornbos RF et al (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165. doi:10.3389/fpls.2013.00165
Article
PubMed
PubMed Central
Google Scholar
Brankatschk R, Töwe S, Kleineidam K et al (2011) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037. doi:10.1038/ismej.2010.184
CAS
Article
PubMed
Google Scholar
Töwe S, Albert A, Kleineidam K et al (2010) Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (l.) Heywood grown in soils from different sites of the Damma Glacier forefield. Microb Ecol 60:762–770. doi:10.1007/s00248-010-9695-5
Article
PubMed
Google Scholar
Kämpfer P, Denner EBM, Meyer S et al (1997) Classification of Pseudomonas azotocolligans Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583. doi:10.1099/00207713-47-2-577
Article
PubMed
Google Scholar
Haichar FZ, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230. doi:10.1038/ismej.2008.80
CAS
Article
PubMed
Google Scholar
Qiu Q, Conrad R, Lu Y (2009) Cross-feeding of methane carbon among bacteria on rice roots revealed by DNA-stable isotope probing. Environ Microbiol Rep 1:355–361. doi:10.1111/j.1758-2229.2009.00045.x
CAS
Article
PubMed
Google Scholar
Shivaji S, Ray MK, Rao NS et al (1992) Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106. doi:10.1099/00207713-42-1-102
Article
Google Scholar
Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegrad 70:141–147. doi:10.1016/j.ibiod.2012.03.002
CAS
Article
Google Scholar
Bardgett RD, Walker LR (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36:555–559. doi:10.1016/j.soilbio.2003.11.002
CAS
Article
Google Scholar
Kowalchuk GA, Buma DS, de Boer W et al (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520. doi:10.1023/A:1020565523615
Article
PubMed
Google Scholar
Nunan N, Daniell TJ, Singh BK et al (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792. doi:10.1128/AEM.71.11.6784-6792.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Tscherko D, Hammesfahr U, Zeltner G et al (2005) Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl Ecol 6:367–383. doi:10.1016/j.baae.2005.02.004
CAS
Article
Google Scholar
Miniaci C, Bunge M, Duc L et al (2007) Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biol Fertil Soils 44:289–297. doi:10.1007/s00374-007-0203-0
Article
Google Scholar
Řeháková K, Chroňáková A, Krištůfek V et al (2015) Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Terr Microbiol 6:304. doi:10.3389/fmicb.2015.00304
Google Scholar
Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309. doi:10.1146/annurev.phyto.42.121603.131041
CAS
Article
PubMed
Google Scholar
Green SJ, Inbar E, Michel FC et al (2006) Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983. doi:10.1128/AEM.02771-05
CAS
Article
PubMed
PubMed Central
Google Scholar
Pérez-Ramírez NO, Rogel MA, Wang E et al (1998) Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 26:289–296. doi:10.1111/j.1574-6941.1998.tb00513.x
Article
Google Scholar
Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol 66:4372–4377. doi:10.1128/AEM.66.10.4372-4377.2000
CAS
Article
PubMed
PubMed Central
Google Scholar