Skip to main content

Advertisement

Log in

Unraveling Microbial Biofilms of Importance for Food Microbiology

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abban S, Jakobsen M, Jespersen L (2012) Attachment behavior of Echerichia coli K12 and Salmonella Typhimurium P6 on food contact surfaces for food transportation. Food Microbiol 31:139–147

    Article  PubMed  Google Scholar 

  2. Abee T, Kovács ÁT, Kuipers OP, Van Der Veen S (2011) Biofilm formation and dispersal in Gram-positive bacteria. Curr Opin Biotechnol 22:172–179

    Article  CAS  PubMed  Google Scholar 

  3. Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 2:169–185

    Article  Google Scholar 

  4. Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349

    Article  PubMed  Google Scholar 

  5. Alhede M, Qvortrup K, Liebrechts R, Hoiby N, Givskov M, Bjarnsholt T (2012) Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol 65:335–342

    Article  CAS  PubMed  Google Scholar 

  6. Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS ONE 6:14786

    Article  CAS  Google Scholar 

  7. Anderson JM, Lin Y, Gillman AN, Parks PJ, Schlievert PM, Peterson ML (2012) Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol 2:64–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Arevalos-Sánchez M, Regalado C, Martin SE, Domínguez-Domínguez J, García-Almendárez BE (2012) Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on listeriolysin O activity. Food Control 24:116–122

    Article  CAS  Google Scholar 

  9. Asséré A, Oulahal N, Carpentier B (2008) Comparative evaluation of methods for counting surviving biofilm cells adhering to a polyvinyl chloride surface exposed to chlorine or drying. J Appl Microbiol 104:1692–1702

    Article  PubMed  Google Scholar 

  10. Auger S, Ramarao N, Faille C, Fouet A, Aymerich S, Gohar M (2009) Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl Environ Microbiol 75:6616–6618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Augustin M, Ali-Vehmas T, Atroshi F (2004) Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J Pharm Sci 18:55–64

    Google Scholar 

  12. Baird FJ, Wadsworth MP, Hill JE (2012) Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm. J Microbiol Methods 90:192–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ball KD, Trevors JT (2002) Bacterial genomics: the use of DNA microarrays and bacterial artificial chromosomes. J Microbiol Methods 49:275–284

    Article  CAS  PubMed  Google Scholar 

  14. Barbosa I, Garcia S, Barbier-Chassefière V, Caruelle JP, Martelly I, Papy-García D (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13:647–653

    Article  CAS  PubMed  Google Scholar 

  15. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343

    Article  CAS  PubMed  Google Scholar 

  16. Benoit MR, Conant CG, Ionescu-Zanetti C, Schwartz M, Matin A (2010) New device for high-throughput viability screening of flow biofilms. Appl Environ Microbiol 76:4136–4142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Berk V, Fong JCN, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J, Yildiz FH, Chu S (2012) Molecular architecture and assembly principles of Vibrio cholera biofilms. Science 337:236–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. Journal of Microbiological Method 59:395–413

    Article  CAS  Google Scholar 

  19. Biswas R, Agarwa RK, Bhilegaonkar KN, Kumar A, Nambiar P, Rawat S, Singh M (2010) Cloning and sequencing of biofilm-associated protein (bapA) gene and its occurrence in different serotypes of Salmonella. Lett Appl Microbiol 52:138–143

    Article  PubMed  CAS  Google Scholar 

  20. Bodur T, Cagri-Mehmetoglu A (2012) Removal of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 biofilms on stainless steel using scallop shell powder. Food Control 25:1–9

    Article  Google Scholar 

  21. Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS ONE 5:e10146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    Article  CAS  PubMed  Google Scholar 

  23. Bredholt S (1999) Microbial methods for assessment of cleaning and disinfection of food-processing surfaces cleaned in a low-pressure system. Eur Food Res Technol 209:145–152

    Article  CAS  Google Scholar 

  24. Bremer PJ, Monk I, Osborne CM (2001) Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. J Food Prot 64:1369–1376

    CAS  PubMed  Google Scholar 

  25. Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70

    Article  CAS  PubMed  Google Scholar 

  26. Brooks JD, Flint SH (2008) Biofilms in the food industry: problems and potential solutions. Int J Food Sci Technol 43:2163–2176

    Article  CAS  Google Scholar 

  27. Bryers JD (1993) Bacterial biofilms. Curr Opin Biotechnol 4:197–204

    Article  CAS  PubMed  Google Scholar 

  28. Burton E, Yakandawla N, LoVetri K, Madhyastha MS (2007) A microplate spectrofluorometric assay for bacterial biofilms. J Ind Microbiol Biotechnol 34:1–4

    Article  CAS  PubMed  Google Scholar 

  29. Carpentier B, Cerf P (2011) Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8

    Article  PubMed  Google Scholar 

  30. Carpentier B, Chassaing D (2004) Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int J Food Microbiol 97:111–122

    Article  CAS  PubMed  Google Scholar 

  31. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Chaturongkasumrit Y, Takahashi H, Keeratipibul S, Kuda T, Kimura B (2011) The effect of polyesterurethane belt surface roughness on Listeria monocytogenes biofilm formation and its cleaning efficiency. Food Control 22:1893–1899

    Article  CAS  Google Scholar 

  33. Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T (2007) A new device for rapid evaluation of biofilm formation potential by bacteria. J Microbiol Methods 68:605–612

    Article  CAS  PubMed  Google Scholar 

  34. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) L. monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Applied Environmental Microbiology 68:728–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chen MY, Lee DJ, Tay JH, Show KY (2007) Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol 75:467–474

    Article  CAS  PubMed  Google Scholar 

  36. Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. International Journal of Medical Microbiology 292:195–205

    Article  CAS  PubMed  Google Scholar 

  37. Costerton JW, Lewandowski Z, Caldwell D, Korber DR, Lappinscott HM (1995) Microbial biofilms. Annual Review Microbiology 49:711–745

    Article  CAS  Google Scholar 

  38. Cowan SE, Gilbert E, Khlebnikov A, Keasling JD (2000) Dual labeling with green fluorescent proteins for confocal microscopy. Appl Environ Microbiol 66:413–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Das T, Sharma PK, Busscher HJ, van der Mei HC, Krom BP (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76:3405–3408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Decker E-M, Dietrich I, Klein C, von Ohle C (2011) Dynamic production of soluble extracellular polysaccharides by Streptococcus mutans. International Journal of Dentistry 46:1–6

    Article  CAS  Google Scholar 

  41. Demirci A, Pometto AL, Ho KL (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 4:299–304

    Article  CAS  Google Scholar 

  42. Díaz C, Schilardi PL, Salvarezza RC, Lorenzo F, de Mele M (2011) Have flagella a preferred orientation during early stages of biofilm formation?: AFM study using patterned substrates. Colloids Surf B: Biointerfaces 82:536–542

    Article  PubMed  CAS  Google Scholar 

  43. Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17:66–72

    Article  CAS  PubMed  Google Scholar 

  44. Dourou D, Beauchamp CS, Yoon Y, Geornaras I, Belk KE, Smith GC, Nychas G-JE, Sofos JN (2011) Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int J Food Microbiol 149:262–268

    Article  PubMed  Google Scholar 

  45. Dufrêne YF (2003) Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 6:317–323

    Article  PubMed  CAS  Google Scholar 

  46. Duguid PJ, Anderson ES, Campbell I (1966) Fimbriae and adhesive properties in salmonellae. The Journal of Pathology and Bacteriology 92:107–137

    Article  CAS  PubMed  Google Scholar 

  47. Elhariry HM (2011) Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food Microbiol 28:1266–1274

    Article  PubMed  Google Scholar 

  48. Feng L, Wu Z, Yu X (2013) Quorum sensing in water and wastewater treatment biofilms. J Environ Biol 34:437–444

    CAS  PubMed  Google Scholar 

  49. Flemming HC, Wingender J (2010) The biofilm matrix. Nature Reviews 8:623–633

    CAS  PubMed  Google Scholar 

  50. Flint S (2006) A rapid, two-hour method for the enumeration of total viable bacteria in samples from commercial milk powder and whey protein concentrate powder manufacturing plants. Int Dairy J 16:379–384

    Article  CAS  Google Scholar 

  51. Furukawa S, Akiyoshi Y, O'Toole GA, Ogihara H, Morinaga Y (2010) Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. Int J Food Microbiol 138:176–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Gabrielson J, Hart M, Jarelöv A, Kühn I, McKenzie D, Möllby R (2002) Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J Microbiol Methods 50:63–73

    Article  CAS  PubMed  Google Scholar 

  53. Gamarra NN, Villena GK, Gutiérrez-Correa M (2010) Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl Microbiol Biotechnol 87:545–551

    Article  CAS  PubMed  Google Scholar 

  54. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  PubMed  Google Scholar 

  55. García-Almendárez BE, Cann IKO, Martin SE, Guerrero-Legarreta I, Regalado C (2008) Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms. Food Control 19:670–680

    Article  CAS  Google Scholar 

  56. Garcias KS, McKillip J (2004) A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol 50:883–890

    Article  Google Scholar 

  57. Gomes MZV, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25:441–447

    Article  CAS  Google Scholar 

  58. Gómez D, Ariño A, Carramiñana JJ, Rota C, Yangüela J (2012) Sponge versus mini-roller for the surface microbiological control f Listeria monocytogenes, total aerobic mesophiles and Enterobacteriaceae in the meat industry. Food Control 27:242–247

    Article  Google Scholar 

  59. Griffiths MW (1993) Applications of bioluminescence in the dairy industry. J Dairy Sci 76:3118–3125

    Article  CAS  PubMed  Google Scholar 

  60. Guilbaud M, Coppet P, Bourion F, Rachman C, Prévost H, Dousset X (2005) Quantitative detection of Listeria monocytogenes in biofilms by Real-Time PCR. Appl Environ Microbiol 71:2190–2194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Habimana O, Moretro T, Langsrud S, Vestby LK, Nesse LL, Heir E (2010) Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora stains. BMC Vet Res 6:1–10

    Article  Google Scholar 

  62. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Review in Microbiology 2:95–108

    Article  CAS  Google Scholar 

  63. Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. TRENDS in Microbiology 13:7–10

    Article  CAS  PubMed  Google Scholar 

  64. Hancock V, Witsø IL, Klemm P (2011) Biofilm formation as a function of adhesin, growth medium, substratum and strain type. International Journal of Medical Microbiology 301:570–576

    Article  CAS  PubMed  Google Scholar 

  65. Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59:1–7

    Article  CAS  PubMed  Google Scholar 

  66. Harmsen M, Lappann M, Knøchel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76:2271–2279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T (2010) An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. EMS Immunol Med Microbiol 59:253–268

    CAS  Google Scholar 

  68. Harrison JJ (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biological Procedures Online 8:194–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Harrison JJ, Turner RJ, Marques LLR, Ceri H (2005) Biofilms. Am Sci 93:508–515

    Article  Google Scholar 

  70. Hartmann I, Carranza P, Lehner A, Stephan R, Eberl L, Riedel K (2010) Genes involved in Cronobacter sakazakii biofilm formation. Appl Environ Microbiol 76:2251–2261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Harvey J, Keenan KP, Gilmour A (2007) Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol 24:380–392

    Article  CAS  PubMed  Google Scholar 

  72. Hefford MA (2005) Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can J Microbiol 51:197–208

    Article  CAS  PubMed  Google Scholar 

  73. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  CAS  Google Scholar 

  74. Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295

    Article  CAS  PubMed  Google Scholar 

  75. Hou S, Liu Z, Young AW, Mark SL, Kallenbach NR, Ren D (2010) Effects of Trp- and Arg-containing antimicrobial-peptide structure on inhibition of Escherichia coli planktonic growth and biofilm formation. Appl Environ Microbiol 76:1967–1974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Huang Y, Shi C, Yu S, Li K, Shi X (2012) A putative MerR family regulator involved in biofilm formation in Listeria monocytogenes 4b G. Foodborne Pathogens and Disease 9:767–772

    Article  CAS  PubMed  Google Scholar 

  77. Jones SE, Versalovic J (2009) Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9:1–9

    Article  CAS  Google Scholar 

  78. Jordan SJ, Perni S, Glenn S, Fernandes I, Barbosa M, Sol M, Tenreiro RP, Chambel L, Barata B, Zilhao B, Aldsworth TG, Adrião A, Faleiro ML, Shama G, Andrew PW (2008) Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Appl Environ Microbiol 74:5451–5456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Joshua GWP, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396

    Article  CAS  PubMed  Google Scholar 

  80. Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Kim H, Ryu J-H, Beuchat LR (2006) Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl Environ Microbiol 72:5846–5856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Kim S-H, Wei C-I (2007) Biofilm formation by multidrug-resistant Salmonella enterica serotype Typhimurium phage type DT104 and other pathogens. J Food Prot 70:22–29

    CAS  PubMed  Google Scholar 

  84. Kim Y, Lee JW, Kang S-G, Oh S, Griffiths MW (2012) Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7. Anaerobe 18:539–545

    Article  PubMed  CAS  Google Scholar 

  85. Kirov SM (2007) Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153:3264–3274

    Article  CAS  PubMed  Google Scholar 

  86. Klausen M (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  PubMed  Google Scholar 

  87. Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26:592–597

    Article  CAS  PubMed  Google Scholar 

  88. Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    Article  CAS  PubMed  Google Scholar 

  89. Laird K, Armitage D, Phillips C (2012) Reduction of surface contamination and biofilms of Enterococcus sp. and Staphylococcus aureus using a citrus-based vapour. J Hosp Infect 80:61–66

    Article  CAS  PubMed  Google Scholar 

  90. Lauderdale KJ, Boles BR, Cheung AL, Horswill AR (2009) Interconnections between sigma β, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 77:1623–1635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Lawrence JR (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69:5543–5554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Lazar V (2011) Quorum sensing in biofilms – how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17:280–285

    Article  PubMed  Google Scholar 

  94. Lebeer S, Verhoeven TLA, Vélez MP, Vanderleyden J, De Keersmaecker SC J (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:6768–6775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Lee Wong AC (1998) Biofilms in food processing environments. J Dairy Sci 81:2765–2770

    Article  Google Scholar 

  96. Lehner A, Riedel K, Eberl L, Breeuwer P, Diep B, Stephan R (2005) Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J Food Prot 68:2287–2294

    CAS  PubMed  Google Scholar 

  97. Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418–4424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ (2008) Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74:4463–4471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362

    Article  CAS  PubMed  Google Scholar 

  100. Lindsay D, von Holy A (1997) Evaluation of dislodging methods for laboratory-grown bacterial biofilms. Food Microbiol 14:383–390

    Article  Google Scholar 

  101. Lindsay D, von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325

    Article  CAS  PubMed  Google Scholar 

  102. Lourenço A, Rego F, Brito L, Frank J (2012) Evaluation of methods to assesss the biofilm-forming ability of Listeria monocytogenes. J Food Prot 75980:1411–1417

    Article  Google Scholar 

  103. Lucchini S, Thompson A, Hinton JCD (2001) Microarrays for microbiologists. Microbiology 147:1403–1414

    Article  CAS  PubMed  Google Scholar 

  104. Luppens SBI, Reij MW, van der Heijden RWL, Rombouts FM, Abee T (2002) Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl Environ Microbiol 68:4194–4200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Ma H, Bryers JD (2010) Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm. J Ind Microbiol Biotechnol 37:1081–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. MacDonald R, Brözel VS (2000) Community analysis of bacterial biofilms in a simulated recirculating cooling-water system by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes. Water Res 34:2439–2446

    Article  CAS  Google Scholar 

  108. Maeyama R, Mizunoe Y, Anderson JM, Tanaka M, Matsuda T (2004) Confocal imaging of biofilm formation process using fluoroprobed Escherichia coli and fluoro-stained exopolysaccharide. Journal of Biomedical Materials Research Part A 70A:274–282

    Article  CAS  Google Scholar 

  109. Mafu AA, Pitre M, Sirois S (2009) Real-Time PCR as a tool for detection of pathogenic bacteria on contaminated food contact surfaces by using a single enrichment medium. J Food Prot 72:1310–1314

    CAS  PubMed  Google Scholar 

  110. Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW (2009) Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 155:2603–2611

    Article  CAS  PubMed  Google Scholar 

  111. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36:893–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Mariani C, Oulahal N, Chamba JF, Dubois-Brissonnet F, Notz E, Briandet R (2011) Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control 22:1357–1362

    Article  CAS  Google Scholar 

  113. Marsh EJ, Luo H, Wang H (2003) A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228:203–210

    Article  PubMed  Google Scholar 

  114. May T, Okabe S (2008) Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colonic acid and curli. J Bacteriol 190:7479–7490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjellberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Reviews 10:39–50

    CAS  Google Scholar 

  116. Meira QGS, de Medeiros BI, Alves Aguiar Athayde AJ, de Siqueira-Júnior JP, De Souza EL (2012) Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control 25:469–475

    Article  CAS  Google Scholar 

  117. Mendonça RCS, Morelli AMF, Pereira JAM, de Carvalho MM, de Souza NL (2012) Prediction of Escherichia coli O157:H7 adhesion and potential to form biofilm under experimental conditions. Food Control 23:389–396

    Article  CAS  Google Scholar 

  118. Meyer B (2003) Approaches to prevention, removal and killing of biofilms. International Biodeterioration & Biodegradation 51:249–253

    Article  CAS  Google Scholar 

  119. Midelet G, Carpentier B (2002) Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef. Appl Environ Microbiol 68:4015–4024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Midelet G, Carpentier B (2004) Impact of cleaning and disinfection agents on biofilm structure and on microbial transfer to a solid model food. J Appl Microbiol 97:262–270

    Article  CAS  PubMed  Google Scholar 

  121. Miettinen MK, Björkroth KJ, Korkeala HJ (1999) Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed-field gel electrophoresis. Int J Food Microbiol 46:187–192

    Article  CAS  PubMed  Google Scholar 

  122. Moltz AG, Martin SE (2005) Formation of biofilms by Listeria monocytogenes under various growth conditions. J Food Prot 68:92–97

    PubMed  Google Scholar 

  123. Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  CAS  PubMed  Google Scholar 

  124. Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168

    Article  CAS  PubMed  Google Scholar 

  125. Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 1:1–8

    Article  CAS  Google Scholar 

  126. Nancharaiah YV, Venugopalan VP, Wuertz S, Wilderer PA, Hausner M (2005) Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm. J Microbiol Methods 60:179–187

    Article  CAS  PubMed  Google Scholar 

  127. Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    Article  CAS  PubMed  Google Scholar 

  128. Nguyen HDN, Yuk H-G (2013) Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control 29:236–240

    Article  CAS  Google Scholar 

  129. Nilsson RE, Ross T, Bowman JP (2011) Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions. Int J Food Microbiol 150:14–24

    Article  PubMed  Google Scholar 

  130. Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67:310–320

    Article  CAS  PubMed  Google Scholar 

  131. Nogva HK, Dromtorp SM, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 34:804–813

    CAS  PubMed  Google Scholar 

  132. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  133. Oliveira R, Azeredo J, Teixeira P.: The importance of physicochemical properties in biofilm formation and activity. In: Wuertz, S., Bishop, P. L., Wilderer, P. A. Biofilms in wastewater treatment: an interdisciplinary approach 211–231. London: IWA Publishing, (2003)

  134. Orgaz B, Lobete MM, Puga CH, San Jose C (2011) Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int J Mol Sci 12:817–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Oulahal-Lagsir N, Martial-Gros A, Boistier E, Blum LJ, Bonneau M (2000) The development of an ultrasonic apparatus for the non-invasive and repeatable removal of fouling in food processing equipment. Lett Appl Microbiol 30:47–52

    Article  CAS  PubMed  Google Scholar 

  137. Oulahal-Lagsir N, Martial-Gros A, Bonneau M, Blum LJ (2000) Ultrasonic methodology coupled to ATP bioluminescence for the non-invasive detection of fouling in food processing equipment – validation and application to a dairy factory. J Appl Microbiol 89:433–441

    Article  CAS  PubMed  Google Scholar 

  138. Pagedar A, Singh J (2012) Influence of physiological cell stages on biofilm formation by Bacillus cereus of dairy origin. Int Dairy J 23:30–35

    Article  CAS  Google Scholar 

  139. Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry 75A:90–103

    Article  Google Scholar 

  140. Pan Y, Breidt F Jr (2007) Enumeration of viable Listeria monocytogenes cells by Real-Time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 73:8028–8031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Park SH, Cheon H-L, Park K-H, Chung M-S, Choi SH, Ryu S, Kang D-H (2012) Inactivation of biofilm cells of foodborne pathogen by aerosolized sanitizers. Int J Food Microbiol 154:130–134

    Article  CAS  PubMed  Google Scholar 

  142. Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    Article  CAS  PubMed  Google Scholar 

  143. Pérez-Osorio AC, Franklin MJ (2008) qRT-PCR of microbial biofilms. Cold Spring Harbor Protocols 3:1–8

    Google Scholar 

  144. Periasamy S, Joo H-S, Duong AC, Bach T-H L, Tan VY, Chatteriee SS, Cheung GYC, Otto M (2012) How Staphylococcus aureus biofilms develop their characteristic structure. PNAS 109:1281–1286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Perrin C (2009) Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl Environ Microbiol 75:1723–1733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Pettit RK, Weber CA, Pettit GR (2009) Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob 8:1–7

    Article  CAS  Google Scholar 

  147. Pires D, Sillankorva S, Faustino A, Azeredo J (2011) Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol 162:798–806

    Article  CAS  PubMed  Google Scholar 

  148. Poimenidou S, Belessi CA, Giaouris ED, Gounadaki AS, Nychas GJE, Skandamis PN (2009) Listeria monocytogenes attachment to and detachment from stainless steel surfaces in a simulated dairy processing environment. Appl Environ Microbiol 75:7182–7188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524

    Article  CAS  PubMed  Google Scholar 

  150. Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Rode TM, Langsrud S, Holck A, Møretrø T (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116:372–383

    Article  CAS  PubMed  Google Scholar 

  153. Saha R, Donofrio RS, Goeres DM, Bagley ST (2012) Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization. Appl Microbiol Biotechnol 94:799–808

    Article  CAS  PubMed  Google Scholar 

  154. Sauer K, Rickard AH, Davies DG (2007) Biofilms and biocomplexity. Microbe 2:347–353

    Google Scholar 

  155. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS ONE 4:e5513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S (2011) Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 82:1015–1037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Shakerifard P, Gancel F, Jacquesb P, Faillec C (2009) Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 25:533–541

    Article  PubMed  Google Scholar 

  158. Sharma M, Anand SK (2002) Biofilms evaluation as an essential component of HACCP for food/dairy processing industry – a case. Food Control 13:469–477

    Article  CAS  Google Scholar 

  159. Silley P, Forsythe S (1996) Impedance microbiology – a rapid change for microbiologists. J Appl Bacteriol 80:233–243

    Article  CAS  PubMed  Google Scholar 

  160. Silva S, Teixeira P, Oliveira R, Azeredo J (2008) Adhesion to and viability of Listeria monocytogenes on food contact surfaces. J Food Prot 71:1379–1385

    PubMed  Google Scholar 

  161. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Technol 43:573–583

    Article  CAS  Google Scholar 

  162. Skillman LC, Sutherland IW, Jones MV, Goulsbra A (1998) Green fluorescent protein as a novel species-specific marker in enteric dual-species biofilms. Microbiology 144:2095–2101

    Article  CAS  PubMed  Google Scholar 

  163. Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57:1539–1550

    Article  CAS  PubMed  Google Scholar 

  164. Sofos JN (2009) Biofilms: our constant enemies. Food Safety Magazine 38:40–41

    Google Scholar 

  165. Sofos JN, Geornaras I (2010) Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci 86:2–14

    Article  PubMed  Google Scholar 

  166. Spiers AJ, Rainey PB (2005) The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151:2829–2839

    Article  CAS  PubMed  Google Scholar 

  167. Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B: Biointerfaces 85:74–181

    Article  CAS  Google Scholar 

  168. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531

    Article  CAS  Google Scholar 

  169. Stepanović S, Cirković I, Mijac V, Svabic-Vlahovic M (2003) Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol 20:339–343

    Article  Google Scholar 

  170. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  CAS  PubMed  Google Scholar 

  171. Stewart PS, Murga R, Srinivasan R, Beer D (1995) Biofilm structural heterogeneity visualized by three microscopic methods. Water Res 29:2006–2009

    Article  CAS  Google Scholar 

  172. Stier RF (2005) Beating back biofilms in food processing. Food Safety Magazine 11(1):31–34

    Google Scholar 

  173. Tang JN, Kang MS, Chen HC, Shi XM, Zhou R, Chen J, Wu DY (2011) The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria. Science China 54:863–869

    Article  CAS  PubMed  Google Scholar 

  174. Teixeira P, Lima J, Azeredo J, Oliveira R (2008) Adhesion of Listeria monocytogenes to materials commonly found in domestic kitchens. Int J Food Sci Technol 43:1239–1244

    Article  CAS  Google Scholar 

  175. Touhami A, Jericho MH, Boyd JM, Beveridge TJ (2006) Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa Pili by using atomic force microscopy. J Bacteriol 188:370–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Trémoulet F, Duché O, Namane A, Martinie B (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210:25–31

    Article  PubMed  Google Scholar 

  177. Unnerstad HE, Bannerman J, Bille M-L, Danielsson-Tham E, Waak W (1996) Prolonged contamination of a dairy with Listeria monocytogenes. Neth Milk Dairy J 50:493–499

    Google Scholar 

  178. Valle J, Re SD, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo J-M (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. PNAS 103:12558–12563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Varga JJ, Therit B, Melville SB (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944–4951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Verghese B, Lok M, Wen J, Alessandria V, Chen Y, Kathariou S, Knabel S (2011) ComK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation and persistence. Appl Environ Microbiol 77:3279–3292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Verran J, Packer A, Kelly P, Whitehead KA (2010) The retention of bacteria on hygienic surfaces presenting scratches of microbial dimensions. Lett Appl Microbiol 50:258–263

    Article  CAS  PubMed  Google Scholar 

  182. Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesion: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Wang Q, Frye JG, McClelland M, Harshey RM (2004) Gene expression patterns during swarming in Salmonella typhimurium: gene specific to surface growth and putative new motility and pathogenicity genes. Molecula Microbiology 52:169–187

    Article  CAS  Google Scholar 

  185. Wang X, Preston JF III, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesion required for biofilm formation. J Bacteriol 186:2724–2734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  CAS  PubMed  Google Scholar 

  187. Wijman JGE, Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007) Air–liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73:1481–1488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Winkelströter LK, Gomes BC, Thomaz MRS, Souza VM, De Martinis ECP (2011) Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control 22:1404–1407

    Article  CAS  Google Scholar 

  189. Wirtanen G, Salo S, Helander IM, Mattila-Sandholm T (2001) Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids Surf B: Biointerfaces 20:37–50

    Article  CAS  PubMed  Google Scholar 

  190. Wright CJ, Shah MK, Powell LC, Armstrong I (2010) Application of AFM from microbial cell to biofilm. Scanning 32:134–149

    Article  CAS  PubMed  Google Scholar 

  191. Ye RW, Wang T, Bedzyk L, Croker KM (2001) Applications of DNA microarrays in microbial systems. J Microbiol Methods 47:257–272

    Article  CAS  PubMed  Google Scholar 

  192. Yeom J, Lee Y, Park W (2012) Effects of non-ionic solute stresses on biofilm formation and lipopolysaccharide production in Escherichia coli O157:H7. Res Microbiol 163:258–267

    Article  CAS  PubMed  Google Scholar 

  193. Zhu X, Liu W, Lametsch R, Aarestrup F, Shi C, She Q, Shi X, KnØchel (2011) Phenotypic, proteomic, and genomic characterization of a putative ABC-transporter permease involved in Listeria monocytogenes biofilm formation. Foodborne Pathogens and Disease 8:495–501

    Article  CAS  PubMed  Google Scholar 

  194. Zottola EA, Sasahara KC (1994) Microbial biofilms in the food processing industry—should they be a concern? Int J Food Microbiol 23:125–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the São Paulo Research Foundation (FAPESP, Processes # 2008/58300-1, 2010/12236-0, 2010/10051-3) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Cristina Pereira De Martinis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkelströter, L.K., Teixeira, F.B.d.R., Silva, E.P. et al. Unraveling Microbial Biofilms of Importance for Food Microbiology. Microb Ecol 68, 35–46 (2014). https://doi.org/10.1007/s00248-013-0347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0347-4

Keywords

Navigation