Skip to main content

Potential Use of Biotechnological Tools to Eradicate Microbial Biofilms

  • Chapter
  • First Online:
Microbial Biotechnology in the Food Industry
  • 131 Accesses

Abstract

Microbial biofilms are an aggregation of microbial cells interconnected by extracellular polymeric substances (EPS), which accelerate the growth of microbes on different surfaces. Biofilms are complex, dynamic, and remarkably heterogeneous structures. Biofilms protect microbes from environmental factors through an extracellular polymeric substance that is a matrix of polysaccharides, peptides, nucleic acids, and other substances synthesized by the microorganisms, this matrix provide shelter to the bacterial cells and metaphorically refereed as the “house of the biofilm”. Formation of biofilm over surfaces is a complex process that usually consists of various steps, firstly an adhesion process (reversible and irreversible), then colonization and subsequently, proliferation through the reproduction of microbes and the synthesis of matrix followed by dispersal of microbial cells from biofilms due to lack of nutrients and oxygen. Several factors regulate the formation of a biofilm, and major ones include the type of microorganism, properties of surfaces, and the environment around the microbes.

Biofilms especially affect the food industries (milk and meat) by contaminating the raw materials and their products through the secretion of spoilage enzymes from biofilms, and the inhabitation of pathogens may create a risk for consumers. Antimicrobial agents cannot effectively combat microbes growing in biofilms. In this regard, one of the important factors is the matrix composition of biofilms that determines the resistance to antimicrobial agents, which may vary with different genera of microbes. In natural environment, synergistic interaction occurs frequently between mixed populations of bacteria, resulting in formation of biofilms that also contribute to tolerance against antimicrobials. So, it is obligatory to employ effective methods to eliminate the biofilms in food industries that are creating serious problems for human health. The purpose of this chapter is to provide an overview about biotechnological tools to combat biofilm formation. Now, it is the right time to use enzymes, phages, peptide-coated surfaces, metabolite molecules, and biosensors as tools to control microbial biofilms. Therefore, choosing a profound, prominent, and efficient measure is an immense need in order to safeguard consumers against biofilm-related hazards. The chapter provides information on the current knowledge regarding microbial biofilms and how to combat them with the aid of biotechnological tools. Main emphasis is laid on use of biotechnological tools to eradicate microbial biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., & Chihib, N. E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archieve Microbiology, 196, 453–472. https://doi.org/10.1007/s00203-014-0983-1

    Article  CAS  Google Scholar 

  • Bahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals, 6(12), 1543–1575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashir, S. F., & Kumar, G. (2021). Preliminary phytochemical screening and in vitro antibacterial activity of Plumbago indica (Laal chitrak) root extracts against drug-resistant Escherichia coli and Klebsiella pneumoniae. Open Agriculture, 6(1), 435–444.

    Article  Google Scholar 

  • Berlanga, M., & Guerrero, R. (2016). Living together in biofilms: The microbial cell factory and its biotechnological implications. Microbial Cell Factories, 15, 165. https://doi.org/10.2210/pdb4bhu/pdb

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi, Y., Xia, G., Shi, C., Wan, J., Liu, L., Chen, Y., Wu, Y., Zhang, W., Zhou, M., He, H., & Liu, R. (2021). Therapeutic strategies against bacterial biofilms. Fundamental Research, 1(2), 193–212.

    Article  CAS  Google Scholar 

  • Brown, S., Santa Maria, J. P., Jr., & Walker, S. (2013). Wall teichoic acids of gram-positive bacteria. Annual Review of Microbiology, 67, 313–336.

    Article  CAS  PubMed  Google Scholar 

  • Burzell, C. K., Aequor Inc. (2022). Methods to reduce contamination, biofilm and fouling from water systems, surfaces, and products. U.S. Patent Application 17/597,270.

    Google Scholar 

  • Carniello, V., Peterson, B. W., van der Mei, H. C., Henk, J., & Busscher, H. J. (2018). Physico-chemistry from initial bacterial adhesion to surface programmed biofilm growth. Advances in Colloid and Interface Science, 261, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Chew, L. Y., Toh, G. T., & Ismail, A. (2019). Application of proteases for the production of bioactive peptides. In Enzymes in food biotechnology (pp. 247–261). Academic.

    Chapter  Google Scholar 

  • Choi, C., Cho, Y., Son, A., Shin, S. W., Lee, Y. J., & Park, H. C. (2020). Therapeutic potential of (−)-agelamide D, a diterpene alkaloid from the marine sponge Agelas sp., as a natural radiosensitizer in hepatocellular carcinoma models. Marine Drugs, 18(10), 500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clokie, M. R., Kropinski, A. M., & Lavigne, R. (2009). Bacteriophages (pp. 69–76). Humana Press.

    Book  Google Scholar 

  • Costa, O. Y. A., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology, 9, 1636. https://doi.org/10.3389/fmicb.2018.01636

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva, M. D. G. C., Durval, I. J. B., da Silva, M. E. P., & Sarubbo, L. A. (2021). Potential applications of anti-adhesive biosurfactants. In Microbial biosurfactants: Preparation, properties and applications (pp. 213–225). Springer.

    Chapter  Google Scholar 

  • Devaraj, A., Buzzo, J. R., Mashburn-Warren, L., Gloag, E. S., Novotny, L. A., Stoodley, P., Bakaletz, L. O., & Goodman, S. D. (2019). The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proceedings of the National Academy of Sciences, 116(50), 25068–25077.

    Article  CAS  Google Scholar 

  • Dogsa, I., Kriechbaum, M., Stopar, D., & Laggner, P. (2005). Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophysical Journal, 89(4), 2711–2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15, 167–193. https://doi.org/10.1128/CMR.15.2.167-193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14, 563–575.

    Article  CAS  PubMed  Google Scholar 

  • Fong, J. N., & Yildiz, F. H. (2015). Biofilm matrix proteins. Microbial Biofilms, 3, 201–222.

    Article  Google Scholar 

  • Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., & Bahador, A. (2018). Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Therapy, 27(4), 293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., & Tribedi, P. (2016). Biofilm, pathogenesis and prevention—A journey to break the wall: A review. Archieves of Microbiology, 198, 1–15. https://doi.org/10.1007/s00203-015-1148-6

    Article  CAS  Google Scholar 

  • Hamblin, M. R., & Hasan, T. (2004). Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochemical & Photobiological Sciences, 3(5), 436–450.

    Article  CAS  Google Scholar 

  • Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 2559.

    Article  Google Scholar 

  • Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm Matrixome: Extracellular components in structured microbial communities. Trends in Microbiology, 8(28). https://doi.org/10.1016/j.tim.2020.03.016

  • Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harbor Perspectives in Medicine, 3, a010306. https://doi.org/10.1101/cshperspect.a010306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laventie, B. J., Sangermani, M., Estermann, F., Manfredi, P., Planes, R., Hug, I., Jaeger, T., Meunier, E., Broz, P., & Jenal, U. (2019). A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host & Microbe, 25, 140–152.

    Article  CAS  Google Scholar 

  • Maciejewska, B., Olszak, T., & Drulis-Kawa, Z. (2018). Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: An ambitious and also a realistic application? Applied Microbiology and Biotechnology, 102, 2563–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier, R. M. (2003). Biosurfactants: Evolution and diversity in bacteria. Advances in Applied Microbiology, 52, 101–122.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, R., Panda, A. K., De Mandal, S., Shakeel, M., Bisht, S. S., & Khan, J. (2020). Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Frontiers in Microbiology, 11, 566325. https://doi.org/10.3389/fmicb.2020.566325

    Article  PubMed  PubMed Central  Google Scholar 

  • Oleinick, N. L., Morris, R. L., & Belichenko, I. (2002). The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochemical & Photobiological Sciences, 1(1), 1–21.

    Article  CAS  Google Scholar 

  • Ponti, M., Perlini, R. A., Ventra, V., Grech, D., Abbiati, M., & Cerrano, C. (2014). Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS One, 9(7), e102782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan, K., Hou, J., Zhang, Z., Ren, Y., Peterson, B. P., Flemming, H. C., Mayer, C., Busscher, H. J., & Van der Mei, H. C. (2022). Water in bacterial biofilms: Pores and channels, storage and transport functions. Critical Reviews in Microbiology, 48(3), 283–302. https://doi.org/10.1080/1040841X.2021.1962802

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Mora, T., Retana-Lobo, C., & Valle- Bourrouet, G. (2018). Biochemical characterization of extracellular polymeric substances from endodontic biofilms. PLoS One, 13(11), e0204081. https://doi.org/10.1371/journal.pone.0204081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Lázaro, D., Alonso-Calleja, C., Oniciuc, E. A., Capita, R., Gallego, D., González-Machado, C., Wagner, M., Barbu, V., Eiros-Bouza, J. M., Nicolau, A. I., & Hernández, M. (2018). Characterization of biofilms formed by foodborne methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 9, 3004. https://doi.org/10.3389/fmicb.2018.03004

    Article  PubMed  PubMed Central  Google Scholar 

  • Satpathy, S., Sen, S. K., Pattanaik, S., & Raut, S. (2016). Review on bacterial biofilm: An universal cause of contamination. Biocatalysis and Agricultural Biotechnology, 7, 56–66.

    Article  Google Scholar 

  • Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., & Xiangmin, L. (2021). Bacterial biofilm inhibition: A focused review on recent therapeutic Strategiefor combating the biofilm mediated infections. Frontiers in Microbiology, 12, 676458. https://doi.org/10.3389/fmicb.2021.676458

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadesse, M., Strøm, M. B., Svenson, J., Jaspars, M., Milne, B. F., Tørfoss, V., Andersen, J. H., Hansen, E., Stensvåg, K., & Haug, T. (2010). Synoxazolidinones A and B: Novel bioactive alkaloids from the ascidian Synoicum pulmonaria. Organic Letters, 12(21), 4752–4755.

    Article  CAS  PubMed  Google Scholar 

  • Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., & Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience Biotechnology and Biochemistry, 80, 7–12. https://doi.org/10.1080/09168451.2015.1058701

    Article  CAS  PubMed  Google Scholar 

  • Van Holm, W., Carvalho, R., Delanghe, L., Eilers, T., Zayed, N., Mermans, F., Bernaerts, K., Boon, N., Claes, I., Lebeer, S., & Teughels, W. (2023). Antimicrobial potential of known and novel probiotics on in vitro periodontitis biofilms. Biofilms and Microbiomes, 9(1), 1–12.

    Google Scholar 

  • Verderosa, A. D., Totsika, M., & Fairfull-Smith, K. E. (2019). Bacterial biofilm eradication agents: A current review. Frontiers in Chemistry, 7, 824. https://doi.org/10.3389/fchem.2019.00824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The microbial “protective clothing” in extreme environments. International Journal of Molecular Science, 20, 3423.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, Q., Yan, T., Jiang, Z., Zhang, X., & Zuo, Y. Y. (2015). Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. Environental Science and Technology, 49, 6164–6171.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parul, Singh, A.P. (2024). Potential Use of Biotechnological Tools to Eradicate Microbial Biofilms. In: Ahmad, F., Mohammad, Z.H., Ibrahim, S.A., Zaidi, S. (eds) Microbial Biotechnology in the Food Industry. Springer, Cham. https://doi.org/10.1007/978-3-031-51417-3_18

Download citation

Publish with us

Policies and ethics