Skip to main content

Advertisement

Log in

Phylogenetic Diversity and Community Structure of the Symbionts Associated with the Coralline Sponge Astrosclera willeyana of the Great Barrier Reef

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge–coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Erwin DH, Laflamme M, Tweedt SM, Sperling E, Pisani D, Peterson K (2011) The Cambrian Conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    Article  PubMed  CAS  Google Scholar 

  2. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  3. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biot 33:545–551

    Article  CAS  Google Scholar 

  4. Vogel G (2008) The inner lives of sponges. Science 320:1028–1030

    Article  PubMed  CAS  Google Scholar 

  5. Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl H-G, Matsunaga S, Piel J (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338:387–390. doi:10.1126/science.1226121

    Article  PubMed  CAS  Google Scholar 

  6. Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific—micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38:1–88

    Article  Google Scholar 

  7. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  PubMed  CAS  Google Scholar 

  8. Hentschel U, Hopke J, Horn M, Friedrich A, Wagner M, Hacker J, Moore B (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  9. Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  10. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  11. Lafi FF, Fuerst JA, Fieseler L, Engels C, Goh WWL, Hentschel U (2009) Widespread distribution of Poribacteria in demospongiae. Appl Environ Microbiol 75:5695–5699

    Article  PubMed  CAS  Google Scholar 

  12. Lee OO, Chui PY, Wong YH, Pawlik JR, Qian P-Y (2009) Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl Environ Microbiol 75:6147–6156

    Article  PubMed  CAS  Google Scholar 

  13. Webster N, Taylor M, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082

    PubMed  CAS  Google Scholar 

  14. Hartman WD, Goreau TF (1970) Jamaican coralline sponges: their morphology, ecology and fossil relatives. Symp Zool Soc Lond 25:205–243

    Google Scholar 

  15. Chombard C, Boury-Esnault N, Tillier A, Vacelet J (1997) Polyphyly of “Sclerosponges” (Porifera, Demospongiae) supported by 28S ribosomal sequences. Biol Bull 193:359–367

    Article  PubMed  CAS  Google Scholar 

  16. Reitner J (1992) “Coralline Spongien”. Der Versuch einer phylogenetisch taxonomischen Analyse. Berliner Geowissenschaftliche Abhandlungen, Reihe (E) Palaeobiologie 1:1–352

    Google Scholar 

  17. Wörheide G (2008) A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge. Mol Phylogenet Evol 47:433–438

    Article  PubMed  Google Scholar 

  18. Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origin and relationships of lower invertebrates. Clarendon, Oxford, pp 1–13

    Google Scholar 

  19. Soja C, Mitchell M, Newton A, Vendetti J, Visaggi C, Antoshkina A, White B (2003) Paleoecology of sponge-? hydroid associations in Silurian microbial reefs. Palaios 18:225–235

    Article  Google Scholar 

  20. Wood R (1987) Biology and revised systematics of some Late Mesozoic stromatoporoids. Spec Pap Paleont 37:1–89

    Google Scholar 

  21. Lister JJ (1900) Astrosclera willeyana, the type of a new family of sponges. Zool Results 4:461–482

    Google Scholar 

  22. Fallon SJ, Guilderson TP (2005) Extracting growth rates from the nonlaminated coralline sponge Astrosclera willeyana using bomb radiocarbon. Limnol Oceanogr Methods 3:455–461

    Article  CAS  Google Scholar 

  23. Wörheide G, Macis L, Jackson D, Reitner J (2007) Characterization of matrix proteins in the coralline demosponge Astrosclera willeyana Lister 1900. In: Arias JL, Fernandez MS (eds) Biomineralization: from paleontology to materials science. Proceedings of the 9th International Symposium on Biomineralization, Santiago, Chile. Editorial Universitaria, pp 225–236

  24. Jackson DJ, Thiel V, Wörheide G (2010) An evolutionary fast-track to biocalcification. Geobiology 8:191–196

    Article  PubMed  CAS  Google Scholar 

  25. Jackson DJ, Macis L, Reitner J, Wörheide G (2011) A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol Biol 11:238

    Article  PubMed  CAS  Google Scholar 

  26. Karlińska-Batres K, Wörheide G (2013) Microbial diversity in the coralline sponge Vaceletia crypta. Antonie Leeuwenhoek. doi:10.1007/s10482-013-9884-6

    PubMed  Google Scholar 

  27. Erpenbeck D, McCormack GP, Breeuwer JA, van Soest RW (2004) Order level differences in the structure of partial LSU across demosponges (Porifera): new insights into an old taxon. Mol Phylogenet Evol 32:388–395

    Article  PubMed  CAS  Google Scholar 

  28. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  29. Schäfer (2001) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. PhD thesis, Universität Bremen, Bremen, Germany

  30. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  31. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  32. Boyle JS, Lew AM (1995) An inexpensive alternative to glassmilk for DNA purification. Trends Genet 11:8

    Article  PubMed  CAS  Google Scholar 

  33. DeLong E (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  34. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    PubMed  CAS  Google Scholar 

  35. Dotzauer C, Ehrmann MA, Vogel RF (2002) Occurence and detection of Thermoanaerobacterium and Thermoanaerobacter in canned food. Food Technol Biotechnol 40:21–26

    Google Scholar 

  36. Juretschko S, Timmermann G, Schmid M, Schleifer K, Pommerening-Roser A, Koops H, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    PubMed  CAS  Google Scholar 

  37. Moyer C, Tiedje J, Dobbs F, Karl D (1998) Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii. Deep-Sea Res Part II 45:303–317

    Article  CAS  Google Scholar 

  38. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  39. Ludwig W, Strunk O, Westram R, Richter L, Meier H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  40. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  41. Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  42. Schloss P, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  43. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345:101–118

    Article  PubMed  CAS  Google Scholar 

  44. Spellerberg I, Fedor P (2003) A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob Ecol Biogeogr 12:177–179

    Article  Google Scholar 

  45. Radwan M, Hanora A, Zan J, Mohamed NM, Abo-Elmatty DM, Abou-El-Ela SH, Hill RT (2010) Bacterial community analyses of two red sea sponges. Mar Biotechnol 12:350–360

    Article  PubMed  CAS  Google Scholar 

  46. Schmitt S, Deines P, Behnam FMW, Taylor M (2011) Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiol Ecol 78:497–510

    Article  PubMed  CAS  Google Scholar 

  47. Webster N, Negri A, Munro M, Battershill C (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  48. Thiel V, Leininger S, Schmaljohann R, Bruemmer F, Imhoff JF (2007) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54:101–111

    Article  PubMed  Google Scholar 

  49. Kamke J, Taylor M, Schmitt S (2010) Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J 4:498–508

    Article  PubMed  CAS  Google Scholar 

  50. Ahn Y-B, Rhee S-K, Fennell D, Kerkhof L, Hentschel U, Haggblom M (2003) Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl Environ Microbiol 69:4159–4166

    Article  PubMed  CAS  Google Scholar 

  51. Bayer K, Schmitt S, Hentschel U (2007) Microbial nitrification in Mediterranean sponges: possible involvement of ammonium-oxidizing Betaproteobacteria. In: Custódio M, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation, sustainability. Museu Nacional, Rio de Janeiro, Brazil, pp 165–171

    Google Scholar 

  52. Philips S, Laanbroek HJ, Verstraete W (2002) Origin, causes, and effects of increased nitrite concentrations in aquatic environments. Rev Environ Sci Biotechnol 1:115–141

    Article  CAS  Google Scholar 

  53. Mohamed N, Saito K, Tal Y, Hill R (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48

    Article  PubMed  CAS  Google Scholar 

  54. Schläppy M, Schöttner S, Lavik G, Kuypers M, De Beer D, Hoffmann F (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602

    Article  Google Scholar 

  55. Off S, Alawi M, Spieck E (2010) Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge. Appl Environ Microbiol 76:4640–4646

    Article  PubMed  CAS  Google Scholar 

  56. Wilkinson C, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    Article  CAS  Google Scholar 

  57. Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921

    Article  PubMed  CAS  Google Scholar 

  58. Meyer B, Kuever J (2008) Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis. Microb Ecol 56:306–321

    Article  PubMed  CAS  Google Scholar 

  59. Hoffmann F, Larsen O, Thiel V, Rapp H, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiol J 22:1–10

    Article  Google Scholar 

  60. Cook AE, Meyers PR (2003) Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53:1907–1915

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi Y, Omura S (2003) Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen Appl Microbiol 49:141–154

    Article  PubMed  CAS  Google Scholar 

  62. Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222

    Article  PubMed  CAS  Google Scholar 

  63. Garrity GM, Holt JM (2001) Phylum BIX. Deferribacteres phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol. 1, 2nd edn. Springer, New York, pp 465–471

    Chapter  Google Scholar 

  64. Montalvo NF, Hill RT (2011) Sponge-associated bacteria are strictly maintained in two closely-related but geographically distant sponge hosts. Appl Environ Microbiol 77:7207–7216

    Article  PubMed  CAS  Google Scholar 

  65. Taylor M, Schupp P, de Nys R, Kjelleberg S, Steinberg P (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433

    Article  PubMed  CAS  Google Scholar 

  66. Wörheide G, Hooper JNA, Degnan BM (2002) Phylogeography of western Pacific Leucettachagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol Ecol 11:1753–1768

    Article  PubMed  Google Scholar 

  67. Wörheide G, Epp L, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24

    Article  PubMed  Google Scholar 

  68. Wörheide G, Degnan BM, Hooper JNA, Reitner J (2002) Phylogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera willeyana—new data from nuclear ITS sequences. In: Moosa KM, Soemodihardjo S, Soegiarto A, Romimohtarto K, Nontji A, Soekarno Suharsono (eds) Proceedings of the 9th International Coral Reef Symposium, Jakarta. Ministry for Environment, Indonesian Institute of Sciences, International Society for Reef Studies, pp 339–346

  69. Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912

    Article  Google Scholar 

  70. Duran S, Pascual M, Estoup A, Turon X (2004) Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Mol Ecol 13:511–522

    Article  PubMed  CAS  Google Scholar 

  71. Duran S, Pascual M, Turon X (2004) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the German Research Foundation (DFG-Wo896/7-1). We are very grateful to Sergio Vargas for help with data analysis. We thank Volker Glöckner for support with DGGE software and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Wörheide.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlińska-Batres, K., Wörheide, G. Phylogenetic Diversity and Community Structure of the Symbionts Associated with the Coralline Sponge Astrosclera willeyana of the Great Barrier Reef. Microb Ecol 65, 740–752 (2013). https://doi.org/10.1007/s00248-013-0212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0212-5

Keywords

Navigation