Skip to main content
Log in

Ultrastructure, Molecular Phylogenetics, and Chlorophyll a Content of Novel Cyanobacterial Symbionts in Temperate Sponges

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Marine sponges often harbor photosynthetic symbionts that may enhance host metabolism and ecological success, yet little is known about the factors that structure the diversity, specificity, and nature of these relationships. Here, we characterized the cyanobacterial symbionts in two congeneric and sympatric host sponges that exhibit distinct habitat preferences correlated with irradiance: Ircinia fasciculata (higher irradiance) and Ircinia variabilis (lower irradiance). Symbiont composition was similar among hosts and dominated by the sponge-specific cyanobacterium Synechococcus spongiarum. Phylogenetic analyses of 16S–23S rRNA internal transcribed spacer (ITS) gene sequences revealed that Mediterranean Ircinia spp. host a specific, novel symbiont clade (“M”) within the S. spongiarum species complex. A second, rare cyanobacterium related to the ascidian symbiont Synechocystis trididemni was observed in low abundance in I. fasciculata and likewise corresponded to a new symbiont clade. Symbiont communities in I. fasciculata exhibited nearly twice the chlorophyll a concentrations of I. variabilis. Further, S. spongiarum clade M symbionts in I. fasciculata exhibited dense intracellular aggregations of glycogen granules, a storage product of photosynthetic carbon assimilation rarely observed in I. variabilis symbionts. In both host sponges, S. spongiarum cells were observed interacting with host archeocytes, although the lower photosynthetic activity of Cyanobacteria in I. variabilis suggests less symbiont-derived nutritional benefit. The observed differences in clade M symbionts among sponge hosts suggest that ambient irradiance conditions dictate symbiont photosynthetic activity and consequently may mediate the nature of host–symbiont relationships. In addition, the plasticity exhibited by clade M symbionts may be an adaptive attribute that allows for flexibility in host–symbiont interactions across the seasonal fluctuations in light and temperature characteristic of temperate environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Arillo A, Bavestrello G, Burlando B, Sarà M (1993) Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Mar Biol 117:159–162

    Article  CAS  Google Scholar 

  3. Baker AC (2003) Flexibility and specificity in coral-algal symbioses: diversity, ecology and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  4. Bannister RJ, Hoogenboom MO, Anthony KRN, Battershill CN, Whalan S et al (2011) Incongruence between the distribution of a common coral reef sponge and photosynthesis. Mar Ecol Prog Ser 423:95–100

    Article  Google Scholar 

  5. Becerro MA, Turon X, Uriz MJ, Templado J (2003) Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biol J Linn Soc 78:429–438

    Article  Google Scholar 

  6. Bongaerts P, Sampayo EM, Bridge TCL, Ridgway T, Vermeulen F et al (2011) Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Mar Ecol Prog Ser 439:117–126

    Article  Google Scholar 

  7. Carballo JL, Ávila E (2004) Population dynamics of a mutualistic interaction between the sponge Haliclona caerulea and the red alga Jania adherens. Mar Ecol Prog Ser 279:93–104

    Article  Google Scholar 

  8. Cebrian E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One 6:e20211

    Article  PubMed  CAS  Google Scholar 

  9. Cox GC, Hiller RG, Larkum AWD (1985) An unusual cyanophyte, containing phycourobilin and symbiotic with ascidians and sponges. Mar Biol 89:149–163

    Article  CAS  Google Scholar 

  10. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al. (2010) Geneious v5.3. Available from http://www.geneious.com.controlled public data. Nucleic Acids Res 35:D169–D172

    Google Scholar 

  11. Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Ass UK 87:1683–1692

    CAS  Google Scholar 

  12. Erwin PM, Thacker RW (2008) Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser 362:139–147

    Article  CAS  Google Scholar 

  13. Erwin PM, Thacker RW (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17:2937–2947

    Article  PubMed  CAS  Google Scholar 

  14. Erwin PM, López-Legentil S, Gonzalez-Pech R, Turon X (2012) A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp. FEMS Microbiol Ecol 79(3):619–637. doi:10.1111/j.1574-6941.2011.01243.x

    Article  PubMed  CAS  Google Scholar 

  15. Flatt PM, Gautschi JT, Thacker RW, Musafija-Girt M, Crews P, Gerwick WH (2005) Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Mar Biol 147:761–774

    Article  CAS  Google Scholar 

  16. Freeman CJ, Thacker RW (2011) Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr 56:1577–1586

    Article  Google Scholar 

  17. Fromont J, Garson M (1999) Sponge bleaching on the West and East coasts of Australia. Coral Reefs 18:340

    Article  Google Scholar 

  18. Gómez R, Erpenbeck D, van Dijk T, Richelle-Maurer E, Devijver C, Braekman JC, Woldringh C, van Soest RWM (2002) Identity of cyanobacterial symbiont of Xestospongia muta. Boll Mus Ist Biol Univ Genova 66–67:82–83

    Google Scholar 

  19. Guidon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  20. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  21. Hernández-Mariné M, Turon X, Catalan J (1990) A marine Synechocystis (Chroococcales, Cyanophyta) epizoic on didemnid ascidians from the Mediterranean Sea. Phycologia 29:275–284

    Article  Google Scholar 

  22. Hill M, Allenby A, Ramsby B, Schönberg C, Hill A (2011) Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88

    Article  PubMed  Google Scholar 

  23. Hirose E, Maruyama T (2004) What are the benefits in the ascidian-Prochloron symbiosis? Endocytobiosis Cell Res 15:51–62

    Google Scholar 

  24. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286

    PubMed  CAS  Google Scholar 

  25. Katoh K, Misawa K, Kum K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  26. Lafargue F, Duclaux G (1979) Premier exemple, en Atlantique tropical, d’une association symbiotique entre une ascidie Didemnidae et une Cyanophycée Chroococcale: Tridemnum cyanophorum nov. sp. et Synechocystis tridemni nov. sp. Annls Inst Océanogr Paris 55:163–184

    Google Scholar 

  27. Lemloh ML, Fromont J, Brümmer F, Usher KM (2009) Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol 9:4

    Article  PubMed  Google Scholar 

  28. Lewin RA (1975) A marine Synechocystis (Cyanophyta, Chroococcales) epizoic on ascidians. Phycologia 14:153–160

    Article  Google Scholar 

  29. López-Legentil S, Song B, Bosch M, Pawlik JR, Turon X (2011) Cyanobacterial diversity and a new Acaryochloris-like symbiont from Bahamian sea-squirts. PLoS One 6:e23938

    Article  PubMed  Google Scholar 

  30. López-Legentil S, Song B, McMurray SE, Pawlik JR (2008) Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta. Mol Ecol 17:1840–1849

    Article  PubMed  Google Scholar 

  31. McMurray SE, Blum JE, Leichter JJ, Pawlik JR (2011) Bleaching of the giant barrel sponge Xestospongia muta in the Florida Keys. Limnol Oceanogr 56:2243–2250

    Article  Google Scholar 

  32. Münchhoff J, Hirose E, Maruyama T, Sunairi M, Burns BP et al (2007) Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians. Environ Microbiol 9:890–899

    Article  PubMed  Google Scholar 

  33. Nakamura Y, Takahashi J, Sakurai A, Inaba Y, Suzuki E, Nihei S, Fujiwara S, Tsuzuki M, Miyashita H, Ikemoto H, Kawachi M, Sekiguchi H, Kurano H (2005) Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant Cell Physiol 46:539–545

    Article  PubMed  CAS  Google Scholar 

  34. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  35. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, New York

    Google Scholar 

  36. Rasband WS (2011) ImageJ. US National Institute of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/. Accessed 27 Apr 2010

  37. Regoli F, Cerrano C, Chierici E, Bompadre S, Bavestrello G (2000) Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol 137:453–461

    Article  CAS  Google Scholar 

  38. Regoli F, Cerrano C, Chierici E, Chiantore MC, Bavestrello G (2004) Seasonal variability of prooxidant pressure and antioxidant adaptation to symbiosis in the Mediterranean demosponge Petrosia ficiformis. Mar Ecol Prog Ser 275:129–137

    Article  CAS  Google Scholar 

  39. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  40. Ridley CP, Faulkner DJ, Haygood MG (2005) Investigation of Oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl Environ Microbiol 71:7366–7375

    Article  PubMed  CAS  Google Scholar 

  41. Roberts DE, Cummins SP, Davis AR, Pangway C (1999) Evidence for symbiotic algae in sponges from temperate coastal reefs in New South Wales Australia. Mem Queensl Mus 44:493–497

    Google Scholar 

  42. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  43. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  PubMed  CAS  Google Scholar 

  44. Rützler K (1981) An unusual bluegreen alga symbiotic with two new species of Ulosa (Porifera: Hymeniacidonidae) from Carrie Bow Cay, Belize. Mar Ecol 2:35–50

    Article  Google Scholar 

  45. Rützler K (1990) Associations between Caribbean sponges and photosynthetic organisms. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institute Press, Washington DC, pp 455–466

    Google Scholar 

  46. Sarà M (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol 11:214–221

    Article  Google Scholar 

  47. Sarà M, Bavestrello G, Cattaneo-Vietti R, Cerrano C (1998) Endosymbiosis in sponges: relevance for epigenesis and evolution. Symbiosis 25:57–70

    Google Scholar 

  48. Saunders BK, Muller-Parker G (1997) The effects of temperature and light on two algal populations in the temperate sea anemone Anthopleura elegantissim (Brandt, 1835). J Exp Mar Biol Ecol 211:213–224

    Article  Google Scholar 

  49. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  50. Schmitt S, Angermeier H, Schiller R, Lindqust N, Hentschel U (2008) Molecular microbial diversity of sponge reproductive stages and mechanistic insight into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708

    Article  PubMed  CAS  Google Scholar 

  51. Shimada A, Yano N, Kanai S, Lewin RA, Maruyama T (2003) Molecular phylogenetic relationship between two symbiotic photo-oxygenic prokaryotes, Prochloron sp. and Synechocystis trididemni. Phycologia 42:193–197

    Article  Google Scholar 

  52. Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524

    Article  PubMed  CAS  Google Scholar 

  53. Steindler L, Beer S, Ilan M (2002) Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33:263–273

    Google Scholar 

  54. Steindler L, Huchon D, Avni A, Ilan M (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131

    Article  PubMed  CAS  Google Scholar 

  55. Steindler L, Schuster S, Ilan M, Avni A, Cerrano C, Beer S (2007) Differential gene expression in a marine sponge in relation to its symbiotic state. Mar Biotech 9:543–549

    Article  CAS  Google Scholar 

  56. Stewart FJ, Cavanaugh CM (2007) Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol 65:44–67

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I, Fujiwara S, Tsuzuki M, Nakamura Y (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76:3153–3159

    Article  PubMed  CAS  Google Scholar 

  58. Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2006) Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated by dual isotope-labeling techniques. J Exp Mar Biol Ecol 336:110–119

    Article  CAS  Google Scholar 

  59. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  60. Thacker RW (2005) Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol 45:369–376

    Article  PubMed  Google Scholar 

  61. Thacker RW, Freeman CJ (2012) Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol 62:57–111. doi:10.1016/B978-0-12-394283-8.00002-3

  62. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    Article  CAS  Google Scholar 

  63. Usher KM (2008) The ecology and phylogeny of cyanobacterial symbionts in sponges. Mar Ecol 29:178–192

    Article  Google Scholar 

  64. Usher KM, Fromont J, Sutton DC, Toze S (2004) The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb Ecol 48:167–177

    Article  PubMed  CAS  Google Scholar 

  65. Usher KM, Kuo J, Fromont J, Toze S, Sutton DC (2006) Comparative morphology of five species of symbiotic and non-symbiotic coccoid cyanobacteria. Eur J Phycol 41:179–188

    Article  Google Scholar 

  66. Usher KM, Toze S, Fromont J, Kuo J, Sutton DC (2004) A new species of cyanobacterial symbiont from the marine sponge Chondrilla nucula. Symbiosis 36:183–192

    CAS  Google Scholar 

  67. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  68. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbionts in animals. J Exp Bot 59:1069–1080

    Article  PubMed  CAS  Google Scholar 

  69. Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Léci C, Boury-Esnault N (eds) Biologie de Spongiarires, vol 291. Colloques Internationaux du Centre National Recherche Scientifique, Paris, pp 373–380

    Google Scholar 

  70. Wilkinson CR (1987) Interocean differences in size and nutrition of coral reef sponges populations. Science 236:1654–1657

    Article  PubMed  CAS  Google Scholar 

  71. Wilkinson CR, Vacelet J (1979) Transplantation of marine sponges to different conditions of light and current. J Exp Mar Biol Ecol 37:91–104

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. M. Uriz (CEAB) for help with sponge identification and F. Crespo (CEAB) for field assistance. This research was supported by the Spanish Government projects CTM2010-17755 and CTM2010-22218, the Catalan Government grant 2009SGR-484 for Consolidated Research Groups, and by the US National Science Foundation under grant 0853089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Erwin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erwin, P.M., López-Legentil, S. & Turon, X. Ultrastructure, Molecular Phylogenetics, and Chlorophyll a Content of Novel Cyanobacterial Symbionts in Temperate Sponges. Microb Ecol 64, 771–783 (2012). https://doi.org/10.1007/s00248-012-0047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0047-5

Keywords

Navigation