Skip to main content
Log in

Intragenomic Variation and Evolution of the Internal Transcribed Spacer of the rRNA Operon in Bacteria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Variation in the internal transcribed spacer (ITS) of the rRNA (rrn) operon is increasingly used to infer population-level diversity in bacterial communities. However, intragenomic ITS variation may skew diversity estimates that do not correct for multiple rrn operons within a genome. This study characterizes variation in ITS length, tRNA composition, and intragenomic nucleotide divergence across 155 Bacteria genomes. On average, these genomes encode 4.8 rrn operons (range: 2–15) and contain 2.4 unique ITS length variants (range: 1–12) and 2.8 unique sequence variants (range: 1–12). ITS variation stems primarily from differences in tRNA gene composition, with ITS regions containing tRNA-Ala + tRNA-Ile (48% of sequences), tRNA-Ala or tRNA-Ile (10%), tRNA-Glu (11%), other tRNAs (3%), or no tRNA genes (27%). Intragenomic divergence among paralogous ITS sequences grouped by tRNA composition ranges from 0% to 12.11% (mean: 0.94%). Low divergence values indicate extensive homogenization among ITS copies. In 78% of alignments, divergence is <1%, with 54% showing zero variation and 81% containing at least two identical sequences. ITS homogenization occurs over relatively long sequence tracts, frequently spanning the entire ITS, and is largely independent of the distance (basepairs) between operons. This study underscores the potential contribution of interoperon ITS variation to bacterial microdiversity studies, as well as unequivocally demonstrates the pervasiveness of concerted evolution in the rrn gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF (2004a) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–5554

    Article  PubMed  CAS  Google Scholar 

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004b) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2628–2635

    Article  CAS  Google Scholar 

  • Antón AI, Martínez-Murcia AJ, Rodríguez-Valera F (1998) Sequence diversity in the 16S-23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli. ECOR collection J Mol Evol 47:62–72

    Google Scholar 

  • Berg KL, Squires C, Squires CL (1989) Ribosomal RNA operon anti-termination—function of leader and spacer region box B-box A sequences and their conservation in diverse microorganisms. J Mol Biol 209:345–358

    Article  PubMed  CAS  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069

    PubMed  CAS  Google Scholar 

  • Boyer SL, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  • Brown MV, Fuhrman JA (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol 41:15–23

    Google Scholar 

  • Brown MV, Schwalbach MS, Hewson I, Fuhrman JA (2005) Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 7:1466–1479

    Article  PubMed  CAS  Google Scholar 

  • Brown DD, Wensink PC, Jordan E (1972) Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol 63:57–73

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Huq A, Colwell RR (1999) Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl Environ Microbiol 65:2202–2208

    PubMed  CAS  Google Scholar 

  • Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031

    Article  PubMed  CAS  Google Scholar 

  • Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques 34:790–802

    PubMed  CAS  Google Scholar 

  • Dechaine EG, Bates AE, Shank TM, Cavanaugh CM (2006) Off-axis symbiosis found: characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal vents. Environ Microbiol 8:1902–1912

    Article  PubMed  CAS  Google Scholar 

  • D’Auria G, Pushker R, Rodriguez-Valera F (2006) IwoCS: analyzing ribosomal intergenic transcribed spacers configuration and taxonomic relationships. Bioinformatics 22:527–531

    Article  PubMed  CAS  Google Scholar 

  • Di Meo CA, Wilbur AE, Holben WE, Feldman R, Vrijenhoek RC, Cary SC (2000) Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66:651–658

    Article  PubMed  CAS  Google Scholar 

  • Dvorak JD, Jue D, Lassner M (1987) Homogenization of tandemly repeated nucleotide sequences by distant-dependent nucleotide sequence conversion. Genetics 116:487–498

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    PubMed  CAS  Google Scholar 

  • García-Martínez J, Acinas SG, Antón AI, Rodríguez-Valera F (1999) Use of the 16S-23S ribosomal genes spacer in studies of prokaryotic diversity. J Microbiol Meth 36:55–64

    Article  Google Scholar 

  • Gianninò V, Santagati M, Guardo G, Cascone C, Rappazzo G, Stefani S (2003) Conservation of the mosaic structure of the four internal transcribed spacers and localization of the rrn operons on the Streptococcus pneumoniae genome. FEMS Microbiol Lett 223:245–252

    Article  PubMed  CAS  Google Scholar 

  • González-Escalona N, Romero J, Espejo RT (2005) Polymorphism and gene conversion of the 16S rRNA genes in the multiple rRNA operons of Vibrio parahaemolyticus. FEMS Microbiol Lett 246:213–219

    Article  PubMed  CAS  Google Scholar 

  • González-Escalona N, Romero J, Guzmán CA, Espejo RT (2006) Variation in the 16S-23S rRNA intergenic spacer regions in Vibrio parahaemolyticus strains are due to indels nearby their tRNAGlu. FEMS Microbiol Lett 256:38–43

    Article  PubMed  CAS  Google Scholar 

  • Graham TA, Golsteyn-Thomas EJ, Thomas JE, Gannon VP (1997) Inter- and intraspecies comparison of the 16S-23S rRNA operon intergenic spacer regions of six Listeria spp. Int J Syst Bacteriol 47:863–869

    Article  PubMed  CAS  Google Scholar 

  • Gürtler V (1999) The role of recombination and mutation in 16S-23S rDNA spacer rearrangements. Gene 238:241–252

    Article  PubMed  Google Scholar 

  • Gürtler V, Stanisich V (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16

    Article  PubMed  Google Scholar 

  • Gürtler V, Mayall BC (1999) rDNA spacer rearrangements and concerted evolution. Microbiology 145:2–3

    PubMed  Google Scholar 

  • Hahn MW, Pöckl M (2005) Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 71:766–773

    Article  PubMed  CAS  Google Scholar 

  • Harasawa R, Pitcher DG, Ramírez AS, Bradbury JM (2004) A putative transposase gene in the 16S-23S rRNA intergenic spacer region of Mycoplasma imitans. Microbiology 150:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto JG, Stevenson BS, Schmidt TM (2003) Rates and consequences of recombination between rRNA operons. J Bacteriol 185:966–972

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310

    Article  PubMed  CAS  Google Scholar 

  • Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC (2003) Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69:2058–2064

    Article  PubMed  CAS  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286

    PubMed  CAS  Google Scholar 

  • Jaspers E, Overmann K (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  PubMed  CAS  Google Scholar 

  • Kent AD, Jones SE, Lauster GH, Graham JM, Newton RJ, McMahon KD (2006) Experimental manipulations of microbial food web interactions in a humic lake: shifting biological drivers of bacterial community structure. Environ Microbiol 8:1448–1459

    Article  PubMed  CAS  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  PubMed  CAS  Google Scholar 

  • Lan R, Reeves PR (1998) Recombination between rRNA operons created most of the ribotype variation observed in the seventh pandemic clone of Vibrio cholerae. Microbiology 144:1213–1221

    PubMed  CAS  Google Scholar 

  • Liao D (2000) Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in Bacteria and Archaea. J Mol Evol 51:305–317

    PubMed  CAS  Google Scholar 

  • Lovett ST, Gluckman TJ, Simon PJ, Sutera VA Jr, Drapkin PT (1994) Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 245:294–300

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst Biol 49:628–651

    Article  PubMed  CAS  Google Scholar 

  • Luz SP, Rodriguez-Valera F, Lan R, Reeves PS (1998) Variation of the ribosomal operon 16S-23S gene spacer region in representatives of Salmonella enterica subspecies. J Bacteriol 180:2144–2151

    CAS  Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade 4: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Mattatall NR, Sanderson KE (1996) Salmonella typhimurium LT2 possesses three distinct 23S rRNA intervening sequences. J Bacteriol 178:2272–2278

    PubMed  CAS  Google Scholar 

  • Milyutina IA, Bobrova VK, Matveeva EV, Schaad NW, Troitsky AV (2004) Intragenomic heterogeneity of the 16S rRNA-23S rRNA internal transcribed spacer among Pseudomonas syringae and Pseudomonas fluorescens strains. FEMS Microbiol Lett 239:17–23

    Article  PubMed  CAS  Google Scholar 

  • Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye WY, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren QH, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913

    Article  PubMed  CAS  Google Scholar 

  • Nagpal ML, Fox KF, Fox A (1998) Utility of 16S-23S rRNA spacer region methodology: How similar are interspace regions within a genome and between strains for closely related organisms? J Microbiol Meth 33:211–219

    Article  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Osorio CR, Collins MD, Romalde JL, Toranzo AE (2005) Variation in 16S-23S rRNA intergenic spacer regions in Photobacterium damselae: a mosaic-like structure. Appl Environ Microbiol 71:636–645

    Article  PubMed  CAS  Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Pearce JM (2006) Minding the gap: frequency of indels in mtDNA control region sequence data and influence on population genetic analyses. Mol Ecol 15:333–341

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Annu Rev Genet 36:75–97

    Article  PubMed  CAS  Google Scholar 

  • Privitera A, Rappazzo G, Sangari P, Giannino V, Licciardello L, Stefani S (1998) Cloning and sequencing of a 16S/23S ribosomal spacer from Haemophilus parainfluenzae reveals an invariant, mosaic-like organization of sequence blocks. FEMS Microbiol Lett 164:289–294

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L, Brothier E, Nazaret S (2000) Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl Environ Microbiol 66:5334–5339

    Article  PubMed  CAS  Google Scholar 

  • Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191

    Article  PubMed  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci USA 102:5084–5089

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Santoyo G, Romero D (2005) Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev 29:169–183

    Article  PubMed  CAS  Google Scholar 

  • Santoyo G, Martínez-Salazar JM, Rodríguez C, Romero D (2005) Gene conversion tracts associated with crossovers in Rhizobium etli. J Bacteriol 187:4116–4126

    Article  PubMed  CAS  Google Scholar 

  • Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24:647–660

    Article  PubMed  CAS  Google Scholar 

  • Segall AM, Roth JR (1994) Approaches to half-tetrad analysis in bacteria: recombination between repeated, inverse-order chromosomal sequences. Genetics 136:27–39

    PubMed  CAS  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP* Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Teyssier C, Marchandin H, Siméon De Buochberg M, Ramuz M, Jumas-Bilak E (2003) Atypical 16S rRNA gene copies in Ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies. J Bacteriol 185:2901–2909

    Article  PubMed  CAS  Google Scholar 

  • Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307:1311–1313

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Normand P, Thiolouse J, Nesme X, Grundmann GL (2003) Relationship between spatial and genetic distance in Agrobacterium spp in 1 cubic centimeter of soil. Appl Environ Microbiol 69:1482–1487

    Article  PubMed  CAS  Google Scholar 

  • Wall JD (2000) A comparison of estimators of the population recombination rate. Mol Biol Evol 17:156–163

    PubMed  CAS  Google Scholar 

  • Walsh JB (1987) Sequence-dependent gene conversion: Can duplicated genes diverge fast enough to escape conversion? Genetics 117:543–557

    PubMed  CAS  Google Scholar 

  • Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB, Markow TA (2005) The functional significance of ribosomal (r)DNA variation: impacts on the evolutionary ecology of organisms. Annu Rev Ecol Evol Syst 36:219–242

    Article  Google Scholar 

  • Wenner T, Roth V, Decaris B, Leblond P (2002) Intragenomic and intraspecific polymorphism of the 16S-23S rRNA internally transcribed sequences of Streptomyces ambofaciens. Microbiology 148:633–642

    PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgments

We thank Rob Young, Scott Edwards, and members of the Cavanaugh lab for their critical comments and support during the preparation of the manuscript. This work was supported by National Science Foundation Grants EF-0412205 and OCE-0453901 awarded to C. Cavanaugh and by the Genetics and Genomics Training Program (GGT) at Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen M. Cavanaugh.

Additional information

Reviewing Editor: Dr. Margaret Riley

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, F.J., Cavanaugh, C.M. Intragenomic Variation and Evolution of the Internal Transcribed Spacer of the rRNA Operon in Bacteria. J Mol Evol 65, 44–67 (2007). https://doi.org/10.1007/s00239-006-0235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0235-3

Keywords

Navigation