Skip to main content

Advertisement

Log in

Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Populations of the sponge Dysidea (Lamellodysidea) herbacea, which host the cyanobacterium Oscillatoria spongeliae, vary in their production of polychlorinated peptides. Peptide natural products previously isolated from D. herbacea are often halogenated and include dysidin, dysidinin, and a series of chlorinated diketopiperazines. Strikingly, the distinctive leucine-derived trichloromethyl signature of these compounds is shared only with metabolites of the marine cyanobacterium Lyngbya majuscula, and includes such compounds as barbamide and nordysidinin. Genetic information available for the barbamide biosynthetic gene cluster was used to successfully polymerase chain reaction (PCR) amplify a barB1 homolog (dysB1) from D. herbacea samples collected in Papua New Guinea. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) analysis showed that dysB1 oligonucleotide probes hybridized to sequences in the filamentous cyanobacterial symbiont O. spongeliae. Consistent with this finding, a D. herbacea/O. spongeliae collection devoid of the polychlorinated peptides did not contain the barB1 homologs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Belarbi EH, Contreras-Gomez A, Christi Y, Garcia C, Molina GE (2003) Producing drugs from marine sponges. Biotechnol Adv 21:585–598

    Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722

    Google Scholar 

  • Blunt JW, Copp BR, Munro MHG; Northcote PT; Prinsep MR (2003) Marine natural products. Nat Prod Rep 20(1):1–48

    Google Scholar 

  • Burja AM, Hill RT (2001) Microbial symbionts of the Australian Great Barrier Reef Sponge, Candidaspongia flabellata. Hydrobiologica 461:41–47

    Google Scholar 

  • Chang Z, Flatt P, Gerwick W, Nguyen V, Willis C, Sherman D (2002) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296:235–247

    Google Scholar 

  • Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67(8):1356–67

    Google Scholar 

  • Charles C, Braekman C, Daloze D, Tursch B, Karlsson R (1978) Chemical studies of marine invertebrates XXXII. Isodysidenin, a further hexachlorinated metabolite from the sponge Dysidea herbacea. Tet Let 19(17):15195–1520

    Google Scholar 

  • Clark DP, Carroll J, Naylor S, Crews P (1998) An antifungal cyclodepsipeptide, Cyclolithistide A, from the sponge Theonella swinhoei. J Org Chem 63:8757–8764

    Google Scholar 

  • Clark WD (1997) Investigations of halogenated constituents isolated from marine sponges associated with cyanobacterial symbionts. Dissertation, University California Santa Cruz, pp 260–366

  • Clark WD, Crews P (1995) A novel chlorinated ketide amino acid, herbamide A, from the marine sponge Dysidea herbacea. Tet Let 36:1185–1188

    Google Scholar 

  • Cook SdC, Bergquist PR (2002) Family Dysideidae Gray, 1876. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Plenum, New York pp 1061–1066

  • Desikachary TV (1959) Cyanophyta. Indian Coucil of Agricultural Research, New Delhi, India

  • Duckworth AR, Samples GA, Wright AE, Pomponi SA (2003) In vitro culture of the tropical sponge Axinella corrugata (Desmospongiae): effect of food cell concentration on growth, clearance rate, and biosynthesis of stevensine. Mar Biotechnol 5(6):519–27

    Google Scholar 

  • Dumdei EJ, Simpson JS, Garson MJ, Bryriel KA, Kennard CHL (1997) New chlorinated metabolites from the tropical marine sponge Dysidea herbacea. Aus J Chem 50:139–144

    Google Scholar 

  • Edwards DJ, Gerwick WH (2004b) Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase. J Am Chem Soc 126(37):11432–11443

    Google Scholar 

  • Edwards DJ, Marquez B, Nogle LM, McPhail K, Goeger D, Roberts MA, Gerwick WH (2004a) Structure and biosynthesis of the jamaicamides, new mixed polyketide/peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11(6):817–833

    Google Scholar 

  • Erickson KL, Wells RJ (1982) New polychlorinated metabolites from a Barrier Reef collection of the sponge Dysidea herbacea. Aust J Chem 35:31–38

    Google Scholar 

  • Flowers AE, Dumdei EJ, Charan RD, Garson MJ, Webb R (1998) Cellular origin of chlorinated diketopiperizines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res 292(3):597–607

    Google Scholar 

  • Ford PW, Gustafson KR, McKee TC, Shigematsu N; Maurizi LK, Pannell LK, Williams DE, de Silva ED, Lassota P, Allen TM, Van Soest R, Andersen RJ, Boyd MR (1999) Papuamides A-D, HIV-Inhibitory and cytotoxic depsipeptides from the sponge Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J Am Soc Chem 121:5899–5909

    Google Scholar 

  • Francavilla C, Chen W, Kinder FRJ (2003) Formal synthesis of (+)-discodermolide. Org Lett 5:1233–1236

    Google Scholar 

  • Garson MJ, Zimmerman MP, Battershill CN, Holden JL, Murphy PT (1994) The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedion terpenensis. Lipids 29(7):509–516

    Google Scholar 

  • Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by percoll density gradient fractionation. Cell Tissue Res 293(2):365–73

    Google Scholar 

  • Gerwick WH, Tan L, Sitachitta N (2001) Nitrogen-containing metabolites from marine cyanobacteria. In: Cordell GA (ed) The alkaloids. Academic, San Diego 57:75–184

  • Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M (2000) Immunolocalization of the toxin Latrunculin B within the Red Sea sponge Negombata magnifica (Demospongiae,Latrunculiidae). Mar Biotechnol 2:213–223

    Google Scholar 

  • Guenzi E, Galli G, Grgurina I, Gross DC, Grandi G (1998) Characterization of the syringomycin synthetase gene cluster—a link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem 273:32857–32863

    Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8 536–544

    Google Scholar 

  • Harrigan GG, Goetz GH, Luesch H, Yang S, Likos J (2001) Dysideaprolines A-F and barbaleucamides A-B, novel polychlorinated compounds from a Dysidea species. J Nat Prod 64:1133–1138

    Google Scholar 

  • Harrison B, Talapatra S, Lobkovsky E, Clardy J, Crews P (1996) The structure and biogenetic origin of Halicyclamine B from a Xestospongia sponge. Tet Lett 37(51):9151–9154

    Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Google Scholar 

  • Hildebrand M, Waggoner LE, Lim GE, Sharp KH, Ridley CP, Haygood MG (2004a) Approaches to identify, clone, and express symbiont bioactive metabolite genes. Nat Prod Rep 21:122–142

    Google Scholar 

  • Hildebrand M, Waggoner LE, Liu H, Sudek S, Allen S, Anderson C, Sherman DH, Haygood MG (2004b) bryA: an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan, Bulula neritina. Chem Biol 11:1543–1552

    Google Scholar 

  • Hill RA (2003) Marine natural products. Annu Rep Prog Chem B Org Chem 99:183–207

    Google Scholar 

  • Hill RT, Hamann MT, Peraud O, Kasanah N (2003) Manzamine-producing actinomycetes. Patent Application 4115-180 PCT

  • Hill RT, Hamann MT, Peraud O, Kasanah N (2004) Manzamine-producing actinomycetes. PCT Int Appl

  • Hoffmann D, Hevel JM, Moore RE (1999) Characterization of the nostopeptolide biosynthetic gene cluster of Nostoc sp. GSV224. *GenBank accession no. AF204805

  • Horton P, Inman WD, Crews P (1990) Enantiomeric relationships and anthelmintic activity of dysinin derivatives from Dysidea marine sponges. J Nat Prod 53:143–151

    Google Scholar 

  • Hu J-F, Hamann MT, Hill R, Kelly M (2003) The manzamine alkaloids. In: Cordell G (ed) The alkaloids: chemistry and biology 60, pp 207–285

  • Ishibashi AM, Iwasaki T, Imai S, Sakamoto S, Yamaguchi K, Ito A (2001) Laboratory culture of the myxomycetes: formation of fruiting bodies of Didymium bahiense and its plasmodial production of makaluvamin. J Nat Prod. 64:108–110

    Google Scholar 

  • Jimenez C, Crews P (1991) Novel marine sponge derived amino acids 13. Additional psammaplin derivatives from Psammaplysilla purpurea. Tetrahedron 47(12/13):2097–2102

    Google Scholar 

  • Jimenez JI, Scheuer PJ (2001) New peptides from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 64:200–203

    Google Scholar 

  • Jimeno JM (2002) A clinical armamentarium of marine-derived anti-cancer compounds. Anticancer Drugs 13:S15–19

    Google Scholar 

  • Julien B, Shah S, Ziermann R, Goldman R, Katz L, Khosla C (2000) Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 249:153–160

    Google Scholar 

  • Kazlauskas R, Lidgard O, Wells RJ (1977) A novel hexachloro-metabolite from the sponge Dysidea herbacea. Tet Lett 18(36):3183-3186

    Google Scholar 

  • Kinder FR Jr (2002) Synthetic approaches toward the bengamide family of antitumor marine natural products. A review. Org Prep Proc Int 34:559, 561–583

    Google Scholar 

  • Luesch H, Yoshida WY, Moore RE, Paul VJ (2000) Isolation and structure of the cytotoxin lyngbyabellin B and absolute configuration of lyngbyapeptin A from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 63:1437–1439

    Google Scholar 

  • Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 123:5418–5423

    Google Scholar 

  • MacMillan JB, Trousdale EK, Molinski TF (2000) Structure of (–)-neodysidinin from Dysidea herbacea. Implications for the biosynthesis of 555-trichloroleucine peptides. Org Lett 2:2721–2723

    Google Scholar 

  • Marquez BL, Watts KS, Yokochi A, Roberts MA, Verdier-Pinard P, Jimenez JI, Hamel E, Scheuer PJ, Gerwick WH (2002) Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod 65:866–871

    Google Scholar 

  • Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 20:441–458

    Google Scholar 

  • Mikalsen B, Foison G, Skulberg OM, Fastner J, Davies W, Gabrielsen, TM, Rudi K, Jakobsen KS (2003) Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185:2774–2785

    Google Scholar 

  • Miki W, Otaki N, Yokoyama A, Kusumi T (1996) Possible origin of zeaxanthin in the marine sponge, Reniera japonica. Experientia 52:93–96

    Google Scholar 

  • Mukherji M, Chien W, Kershaw NJ, Clifton IJ, Schofield CJ, Wierzbicki AS, Lloyd MD (2001) Structure–function analysis of phytanoyl-CoA 2-hydroxylase mutations causing Refsum’s disease. Hum Mol Gen 10:1971–1982

    Google Scholar 

  • Muller WE, Wimmer W, Shatton W, Bohm M, Batel R, Filic Z (1999) Initiation of an aquaculture of sponges for the sustainable production of bioactive metabolites in open systems: example Geodia Cydomium. Mar Biotechnol 1:569–579

    Google Scholar 

  • Nishizawa T, Asayama M, Fujii K, Harada K, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126:520–529

    Google Scholar 

  • Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    Google Scholar 

  • Orjala J, Gerwick WH (1996) Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 59:427–430

    Google Scholar 

  • Osinga R, Armstrong E, Burgess JG, Hoffmann F, Reitner J, Schumann-Kindel G (2001) Sponge-microbe associations and their importance for sponge bioprocess engineering. Hydrobiologia 461:55–62

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134

    Google Scholar 

  • Radisky DC, Radisky ES, Barrows LR, Copp BR, Kramer RA, Ireland CM (1993) Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Figian sponges of the genus Zyzzya. J Am Chem Soc 115:1632–1638

    Google Scholar 

  • Richelle-Maurer E, Braekman JC, De Kluijver MJ, Gomez R, Van Soest R, Van de Vyver G, Devijver C (2001) Cellular localization of (2R,3R,7Z)-2-aminotetradec-7-ene-1,3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti. Cell Tissue Res 306:157–165

    Google Scholar 

  • Richelle-Maurer E, DeKluijver MJ, Feio S, Gaudencio S, Gaspar H, Gomez R, Tavares R, Van de Vyver G, VanSoest RWM (2003) Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera. Biochem Syst Ecol 31:1073-1091

    Google Scholar 

  • Rodríguez F, Oliver JL, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Google Scholar 

  • Rodriguez-Valera F, Garcia Martinez J, Martinez-Murcia AJ (1995) Intraspecific diversity in bacteria. The case of Escherichia coli. Microbiologia 11:379–382

    Google Scholar 

  • Rudi K, Fossheim T, Jakobsen KS (2002) Nested evolution of a tRNA-Leu (UAA) group I intron by both horizontal intron transfer and recombination of the entire tRNA locus. J Bacteriol 184:666–671

    Google Scholar 

  • Rudi KO, Skulberg M, Jakobsen KS (1998) Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180:3453–3461

    Google Scholar 

  • Rützler K (1990) Associations between Caribbean sponges and photosynthetic organisms. In: Rützler K (ed) New perspectives in sponge biology. 3rd Int Sponge Conf (1985) Smithsonian Institute Press, Washington, D.C., pp 455–466

  • Saloman CE, Deerinck T, Ellisman MH, Faulkner DJ (2001) The cellular localization of dercitamide in the Palauan sponge Oceanapia sagittaria. Mar Biol 139:313–319

    Google Scholar 

  • Salomon CE, Magarvey NA, Sherman DH (2004) The merging of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Google Scholar 

  • Sanchez C, Butovich IA, Brana AF, Rohr J, Mendez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin. Characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531

    Google Scholar 

  • Schmidt EW, Bewley CA, Faulkner DJ (1998) Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique. J Org Chem 63:1254–1258

    Google Scholar 

  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel d-proteobacterium, “Candidatus Entotheonella palauensis.” Mar Biol 136:969–977

    Google Scholar 

  • Schwartsmann G, Da Rocha AB, Mettei J, Lopes R (2003) Marine-derived anticancer agents in clinical trials. Expert Opin Invest Drugs 12:1367–1383

    Google Scholar 

  • Smith AB, Freeze BS, Brouard I, Hirose TA (2003) Practical improvement, enhancing the large-scale synthesis of (+)-discodermolide: a third-generation approach Org Lett 5:4405–4408

    Google Scholar 

  • Swofford DL (1999) PAUP*: phylogenetic analysis using Parsimony (*and other methods), Version 4.0b3a. Sinauer, Mass.

  • Tan LT, Marquez BL,d Gerwick WH (2002) Lyngbouilloside, a novel glycosidic macrolide from the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 65:925–928

    Google Scholar 

  • Thacker RW, Paul VJ (2004) Morphological, chemical, and genetic diversity of tropical marine cyanobacteria, Lyngbya spp. and Symploca spp. (Oscillatoriales). Appl Environ Microbiol 70:3305–3312

    Google Scholar 

  • Thacker RW, Starnes S (2003) Host specificity of the symbiotic cyanobacteria, Oscillatoria spongeliae, in marine sponges, Dysidea spp. Mar Biol 142:643–648

    Google Scholar 

  • Thale Z, Kinder FR, Bair KW, Bontempo J, Czuchta AM, Versace RW, Phillips PE, Sanders ML, Wattanasin S, Crews P (2001) Bengamides revisited: new structures and antitumor studies. J Org Chem 66(5):1733–1741

    Google Scholar 

  • Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818

    Google Scholar 

  • Turon X, Becerro M, Uriz MJ (2000) Cellular localization of secondary metabolites in the sponge Aplysina aerophoba: X-ray microanalysis coupled with cryofixation techniques for detection of halogenated compounds. Cell Tissue Res 301:311–322

    Google Scholar 

  • Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49:349–353

    Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    Google Scholar 

  • Uriz MJ, Turon X, Galera J, Tur JM (1996) New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res 285:519–527

    Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Ecol 30:301–314

    Google Scholar 

  • Vanderah DJ, Schmitz FJ (1975) Marine natural products: isolation of dendrolasin from the sponge Oligoceras hemorrhages. Lloydia 38:271–272

    Google Scholar 

  • Wagner-Dobler I, Beil W, Lang S, Meiners M, Laatsch H (2002) Integrated approach to explore the potential of marine microoganisms for the production of bioactive metabolites. Adv Biochem Eng Biotechnol 74:207–238

    Google Scholar 

Download references

Acknowledgements

We thank Patrick Erwin from the Department of Biology at the University of Alabama at Birmingham (UAB) for providing laboratory assistance and Kathy Cook from the Department of Botany and Plant Pathology at Oregon State University for the preparation of the mounted sections of Dysidea herbacea. We would also like to thank the Center of Gene Research and Biotechnology at Oregon State University and the Center for AIDS Research at UAB for DNA sequencing. Special thanks are extended to Karen Tenney for expert collection of D. herbacea samples. This research was supported by the National Institutes of Health (NIH) under grant nos. GM20657 (W.H.G. and P.F.), CA83155 (W.H.G. and P.C.), CA45295 (P.C.) and supplement equipment (ESI-TOF-LCMS) grant to NIH CA52955 (P.C.), and the National Science Foundation under grant no. 0209329 (R.W.T.). We would like to acknowledge and deeply thank the governments of Papua New Guinea, Curacao, and Panama for sponsoring the collection and use of materials for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Gerwick.

Additional information

Communicated by P.W. Sammarco, Chauvin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flatt, P.M., Gautschi, J.T., Thacker, R.W. et al. Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Marine Biology 147, 761–774 (2005). https://doi.org/10.1007/s00227-005-1614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-1614-9

Keywords

Navigation