Skip to main content
Log in

Structural Stability, Microbial Biomass and Community Composition of Sediments Affected by the Hydric Dynamics of an Urban Stormwater Infiltration Basin

Dynamics of Physical and Microbial Characteristics of Stormwater Sediment

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH +4 , 53–717 μg/g DW), pH (6.9–7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release of NH +4 , the bloom of the microbial biomass, and the change in structure of the bacterial community. These results open new perspectives for basin management since the risk of OM and pollutant transfer to the aquifer is greatly affected by alternating dry and flood periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. Calculations were performed with structural data acquired on these sediments, a bulk density of 0.635 ± 0.205 g/cm3 was used (Lassabatere 2010 [35])

References

  1. AFNOR (1988) Détermination du pH dans l’eau. NF X 31–103. In: Détermination du pH dans l’eau. NF X 31–103. Paris. p 11

  2. AFNOR (1994) Qualité du sol—Détermination de la teneur pondérale en matière sèche et en eau. NF X 31–102. Paris. p 12

  3. Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils. Soil Biol Biochem 20:107–114

    Article  CAS  Google Scholar 

  4. Badin A-L, Bedell JP, Delolme C (2009) The effect of water content on aggregation and contaminant leaching: the study of urban sediments. J Soils Sediments 9:653–663

    Article  CAS  Google Scholar 

  5. Badin A-L, Faure P, Bedell J-P, Delolme C (2008) Distribution of organic pollutants and natural organic matter in urban storm water sediments as a function of grain size. Sci Total Environ 403:178–187

    Article  PubMed  CAS  Google Scholar 

  6. Badin A-L, Méderel G, Béchet B, Borschneck D, Delolme C (2009) Detecting evidence of the role of organic matter in the aggregation of urban stormwater sediment deposits by using grain size analyses with laser diffractometry. Geoderma 153:163–171

    Article  CAS  Google Scholar 

  7. Barraud S, Gibert J, Winiarski T, Bertrand Krajewski JL (2002) Implementation of a monitoring system to measure impact of stormwater runoff infiltration. Water Sci Technol 45(3):203–210

    PubMed  CAS  Google Scholar 

  8. Bastida F, Kandeler E, Moreno JL, Ros M, Garcia C, Hernandez T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol 40:318–329

    Article  Google Scholar 

  9. Bedell J-P, Neto M, Delolme C, Ghidini M, Winiarski T, Perrodin Y (2004) Study if physico-chemical and microbiological parameters of a soil in restored stormwater infiltration basin in the Lyon area. 5th NOVATECH, Lyon, France. vol 2. pp 1469–1476.

  10. Bragato G, Leita L, Figliolia A, De Nobili M (1998) Effects of sewage sludge pre-treatment on microbial biomass and biovailability of heavy metals. Soil Tillage Res 46:129–134

    Google Scholar 

  11. Chen TH, Chiu CY, Tian G (2005) Seasonal dynamics of soil microbial biomass in coastal sand dune forest. Pedobiologia 49:645–653

    Article  CAS  Google Scholar 

  12. Clozel B, Ruban V, Durand C, Conil P (2006) Origin and mobility of heavy metals in contaminated sediments from retention and infiltration ponds. Appl Geochem 21:1781–1798

    Article  CAS  Google Scholar 

  13. Compton JE, Watrud LS, Porteous LA, DeGrood S (2004) Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. For Ecol Manage 196:143–158

    Article  Google Scholar 

  14. Datry T, Malard F, Gibert J (2004) Dynamics of soluted and dissolved oxygen in shallow urban groundwater below a stormwater infiltration basin. Sci Total Environ 329:215–229

    Article  PubMed  CAS  Google Scholar 

  15. De Nobili M, Contin M, Brookes PC (2006) Microbial biomass dynamics in recently air-dried and rewetted soils compared to others stored air-dry for up to 103 years. Soil Biol Biochem 38:2871–2881

    Article  Google Scholar 

  16. Debosz K, Rasmussen PH, Pedersen AR (1999) Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input. Appl Soil Ecol 13:209–218

    Article  Google Scholar 

  17. Dechesne M, Barraud S, Bardin J-P (2004) Spatial distribution of pollution in an urban stormwater infiltration basin. J Contam Hydrol 72:189–205

    Article  PubMed  CAS  Google Scholar 

  18. Delolme C, Bedell JP, Winiarski T, Larmet H, Neto M, Muris M, Perrodin Y (2005) The soil microbial compartment submitted to the infiltration of stormwater: description and role in the heavy metals transfer. Houille Blanche 3:33–38

    Article  Google Scholar 

  19. Devi NB, Yadava PS (2006) Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Appl Soil Ecol 31:220–227

    Article  Google Scholar 

  20. Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22:299–304

    Article  CAS  Google Scholar 

  21. Dodelec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–293

    Article  Google Scholar 

  22. Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7:47–52

    Google Scholar 

  23. Durand C, Ruban V, Amblès A (2005) Characterisation of complex organic matter present in contaminated sediments from water retention ponds. J Anal Appl Pyrol 73:17–28

    Article  CAS  Google Scholar 

  24. Durand C, Ruban V, Ambles A, Oudot J (2004) Characterization of the organic matter of sludge: determination of lipids, hydrocarbons and PAHs from road retention/infiltration ponds in France. Environ Pollut 132:375–384

    Article  PubMed  CAS  Google Scholar 

  25. Durin B (2006) Transfert et transport collïdal de polluants métalliques. Université de Nantes, Nantes. p. 376

  26. Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787

    Article  CAS  Google Scholar 

  27. Fierer N, Schimel JP, Holden PA (2003) Influence of drying-rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71

    Article  PubMed  CAS  Google Scholar 

  28. Franklin RB, Mills AL (2007) Introduction. In: Franklin RB, Mills AL (eds) The spatial distribution of microbes in the environment. Springer, Dordrecht, p 333

    Chapter  Google Scholar 

  29. Gury J, Zinger L, Gielly L, Taberlet P, Geremia RA (2008) Exonuclease activity of proofreading DNA polymerases is at the origin of artifacts in molecular profiling studies. Electrophoresis 29:2437–2444

    Article  PubMed  CAS  Google Scholar 

  30. Iovieno P, Baath E (2008) Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiol Ecol 65:400–407

    Article  PubMed  CAS  Google Scholar 

  31. Joergensen RG (1996) Quantification of the microbial biomass by determining ninhydrin-reactive N. Soil Biol Biochem 28:301–306

    Article  CAS  Google Scholar 

  32. Joergensen RG, Brookes PC (2005) Quantification of soil microbial biomass by fumigation-extraction. Manual of Soil Analysis—Monitoring and Assessing Soil Bioremediation Soil Biology 5:283–297

    Google Scholar 

  33. Kepner JRL, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615

    PubMed  CAS  Google Scholar 

  34. Larmet H, Delolme C, Bedell J-P (2007) Bacteria and heavy metals concomitant transfer in an infiltration basin: columns study under realistic hydrodynamical conditions, vol. 2. GRAIE, Lyon. pp 615–622.

  35. Lassabatere L, Angulo-Jaramillo R, Goutaland D, Letellier L, Gaudet J-P, Winiarski T, Delolme C (2010) Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma. doi:10.1016/j.geoderma.2010.02.031

    Google Scholar 

  36. Le Coustumer S-M (2008) Colmatage et rétention des éléments traces métalliques dans les systèmes d’infiltration des eaux pluviales. INSA, Lyon. p. 427

  37. Lee PK, Baillif P, Touray JC (1997) Geochemical behaviour and relative mobility of metals (Mn, Cd, Zn and Pb) in recent sediments of a retention pond along the A-71 motorway in Sologne, France. Environ Geol 32:142–152

    Article  CAS  Google Scholar 

  38. Legret M, Pagotto C (1999) Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci Total Environ 235:143–150

    Article  PubMed  CAS  Google Scholar 

  39. Mathieu C, Pieltain F (2003) Analyse chimique des sols: Méthodes choisies. Lavoisier, Paris

  40. Mermillod-Blondin F, Nogaro G, Vallier F, Gibert J (2008) Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems. Chemosphere 72:213–223

    Article  PubMed  CAS  Google Scholar 

  41. Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM (2005) Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–2204

    Article  CAS  Google Scholar 

  42. Montgomery HJ, Monreal CM, Young JC, Seifert KA (2000) Determination of soil fungal biomass from soil ergosterol analyses. Soil Biol Biochem 32:1207–1217

    Article  CAS  Google Scholar 

  43. Murakami M, Nakajima F, Furumai H (2008) The sorption of heavy metal species by sediments in soakaways receiving urban road runoff. Chemosphere 70:2099–2109

    Article  PubMed  CAS  Google Scholar 

  44. Neto M, Ohannessian A, Delolme C, Bedell JP (2007) Towards an optimized protocol for measuring global dehydrogenase activity in storm-water sediments. J Soils Sediments 7:101–110

    Article  CAS  Google Scholar 

  45. Nogaro G, Mermillod-Blondin F, Montuelle B, Boisson J-C, Bedell J-P, Ohannessian A, Volat B, Gibert J (2007) Influence of a stormwater sediment deposit on microbial and biogeochemical processes in infiltration porous media. Sci Total Environ 377:334–348

    Article  PubMed  CAS  Google Scholar 

  46. Nogaro G, Mermillod-Blondin F, Montuelle B, Boisson J-C, Lafont M, Volat B, Gibert J (2007) Do tubificid worms influence organic matter processing and fate of pollutants in stormwater sediments deposited at the surface of infiltration systems? Chemosphere 70:315–328

    Article  PubMed  CAS  Google Scholar 

  47. Pesaro M, Nicollier G, Zeyer J, Widmer F (2004) Impact of soil drying-rewetting stress on microbial communities and activities and on degradation of two crop protection products. Appl Environ Microbiol 70:2577–2587

    Article  PubMed  CAS  Google Scholar 

  48. Pétavy F, Ruban V, Conil P (2009) Treatment of stormwater sediments: efficiency of an attrition scrubber—laboratory and pilot-scale studies. Chem Eng J 145:475–482

    Article  Google Scholar 

  49. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  50. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed  CAS  Google Scholar 

  51. Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120

    Article  PubMed  CAS  Google Scholar 

  52. Reynolds KA, Pepper IL (2000) Microorganisms in the environment. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic, San Diego, pp 19–27

    Google Scholar 

  53. Rost U, Joergensen RG, Chander K (2001) Effects of Zn enriched sewage sludge on microbial activities and biomass in soil. Soil Biol Biochem 33:633–638

    Article  CAS  Google Scholar 

  54. Sherr EB, Sherr BF, Longneker K (2006) Distribution of bacterial abundance and cell-specific nucleic acid content in the Northeast Pacific Ocean. Deep Sea Res I 53:713–725

    Article  CAS  Google Scholar 

  55. Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem 31:831–838

    Article  CAS  Google Scholar 

  56. Selivanovskaya SY, Latypova VZ (2006) Effects of composted sewage sludge on microbial biomass, activity and pine seedlings in nursery forest. Waste Manage 26:1253–1258

    Article  CAS  Google Scholar 

  57. Team RDC (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  58. Winiarski T, Bedell JP, Delolme C, Perrodin Y (2006) The impact of stormwater on a soil profile in an infiltration basin. Hydrogeol J 14:1244–1251

    Article  CAS  Google Scholar 

  59. Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, Van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol Mol Integr Physiol 130:437–460

    Article  CAS  Google Scholar 

  60. Zinger L, Gury J, Alibeu O, Rioux D, Gielly L, Sage L, Pompanon F, Geremia RA (2008) CE-SSCP and CE-FLA, simple and high-throughput alternatives for fungal diversity studies. J Microbiol Methods 72:42–53

    Article  PubMed  CAS  Google Scholar 

  61. Zinger L, Gury J, Giraud F, Krivobok S, Gielly L, Taberlet P, Geremia RA (2007) Improvements of polymerase chain reaction and capillary electrophoresis single-strand conformation polymorphism methods in microbial ecology: toward a high-throughput method for microbial diversity studies in soil. Microb Ecol 54:203–216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work presented was funded in part by the ECOPLUIE project backed by the PRECODD research program (2005) (no. ANR: ANR-05-ECOT-006-07, no. ADEME: 0594C-0089) and the Ministère de l’Ecologie, de l’Energie, du Développement durable et de l’Aménagement du territoire-Direction de la recherche et de l’innovation (Convention no. 07 DST S 002). It was also carried out in the framework of the regional observatory on urban hydrology (OTHU) with the collaboration of the “Greater Lyon” urban community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Bedell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badin, A.L., Monier, A., Volatier, L. et al. Structural Stability, Microbial Biomass and Community Composition of Sediments Affected by the Hydric Dynamics of an Urban Stormwater Infiltration Basin. Microb Ecol 61, 885–897 (2011). https://doi.org/10.1007/s00248-011-9829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9829-4

Keywords

Navigation