Skip to main content
Log in

Ergosterol and microbial biomass relationship in soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Ergosterol and microbial biomass C were measured in 26 arable, 16 grassland and 30 forest soils. The ergosterol content ranged from 0.75 to 12.94 μg g-1 soil. The geometric mean ergosterol content of grassland and forest soils was around 5.5 μg g-1, that of the arable soils 2.14 μg g-1. The ergosterol was significantly correlated with biomass C in the entire group of soils, but not in the subgroups of grassland and forest soils. The geometric mean of the ergosterol: microbial biomass C ratio was 6.0 mg g-1, increasing in the order grassland (5.1), arable land (5.4) and woodland (7.2). The ergosterol:microbial biomass C ratio had a strong negative relationship with the decreasing cation exchange capacity and soil pH, indicating that the fungal part of the total microbial biomass in soils increased when the buffer capacity decreased. The average ergosterol concentration calculated from literature data was 5.1 mg g-1 fungal dry weight. Assuming that fungi contain 46% C, the conversion factor from micrograms ergosterol to micrograms fungal biomass C is 90. For soil samples, neither saponification of the extract nor the more effective direct saponification during extraction seems to be really necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M (1977) Introduction to soil microbiology. 2nd edn. Wiley, New York

    Google Scholar 

  • Anderson JPE, Domsch KH (1973) Quantification of bacterial and fungal contribution to soil respiration. Arch Mikrobiol 93:113–127

    Google Scholar 

  • Anderson JPE, Domsch KH (1975) Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can J Microbiol 21:314–322

    Google Scholar 

  • Antibus RK, Sinsabaugh RL (1993) The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza 3:137–144

    Google Scholar 

  • Arnezeder C, Hampel WA (1991) Influence of growth rate on the accumulation of ergosterol in yeast-cells in a phosphate limited continuous culture. Biotechnol Lett 13:97–100

    Google Scholar 

  • Davis MW, Lamar RT (1992) Evaluation of methods to extract ergosterol for quantification of soil fungal biomass. Soil Biol Biochem 24:189–198

    Google Scholar 

  • Djajakirana G, Joergensen RG, Meyer B (1993) Die Messung von Ergosterol in Böden. Mitteilgn Dtsch Bodenkundl Gesellsch 71:317–318

    Google Scholar 

  • Frey B, Buser HR, Schüepp H (1992) Identification of ergosterol in vesicular-arbuscular mycorrhizae. Biol Fertil Soils 13:229–234

    Google Scholar 

  • Gessner MO, Schwoerbel J (1991) Fungal biomass associated with decaying leaf litter in a stream. Oecologia 87:602–603

    Google Scholar 

  • Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    Google Scholar 

  • Grant WD, West AN (1986) Measurement of ergosterol, diaminopimelic acid and glucosamine in soil: evaluation as indicators of microbial biomass. J Microbiol Meth 6:47–53

    Google Scholar 

  • Hassink J, Lebnik G, van Veen JA (1991) Microbial biomass and activity of a reclaimed-polder soil under a conventional or a reduced-input farming system. Soil Biol Biochem 23:507–513

    Google Scholar 

  • Holtz RB, Schisler LC (1972) Lipid metabolism of Agaricus bisporus (Lange)., Sing. 2. Biosynthesis of sporophore lipids. Lipids 7:251–255

    Google Scholar 

  • Ingham ER, Horton KA (1987) Bacterial, fungal and protozoan responses to chloroform fumigation in stored soil. Soil Biol Biochem 19:545–550

    Google Scholar 

  • Ingham ER, Griffiths RP, Cromack K, Entry JA (1991) Comparison of direct vs fumigation incubation microbial biomass estimates from ectomycorrhizal mat and non-mat soils. Soil Biol Biochem 23:465–471

    Google Scholar 

  • Jenkinson DS (1988) The determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, pp 368–386

    Google Scholar 

  • Joergensen RG, Kübler H, Meyer B, Wolters V (1993) Die Beziehungen von mikrobiell gebundenem C, N and P in Acker- und Graslandböden. VDLUFA-Schriftenr 37:189–192

    Google Scholar 

  • Joergensen RG, Anderson TH, Wolters V (1995) C and N relationships of the soil microbial biomass in soils of beech (Fagus sylvatica L.) forests. Biol Fertil Soils 19:141–147

    Google Scholar 

  • Kaiser EA, Mueller T, Joergensen RG, Insam H, Heinemeyer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24:675–683

    Google Scholar 

  • Kok LT, Norris DM, Chu HM (1970) Sterol metabolism as a basis for a mutualistic symbiosis. Nature 225:661–662

    Google Scholar 

  • Martin F, Delaruelle C, Hilbert JL (1990) An improved ergosterol assay to estimate fungal biomass in ectomycorrhizas. Mycol Res 94:1059–1064

    Google Scholar 

  • Matcham SE, Jordan BR, Wood DA (1985) Estimation of fungal biomass in solid substrate by three independent methods. Appl Microbiol Biotechnol 21:108–112

    Google Scholar 

  • Newell SY, Miller JD, Fallon RD (1987) Ergosterol content of saltmarsh fungi: effect of growth conditions and mycelial age. Mycologia 79:688–695

    Google Scholar 

  • Newell SY, Fallon RD, Miller JD (1989) Decomposition and microbial dynamics for standing, naturally positioned leaves of the saltmarsh grass Spartina alterniflora. Mar Biol 101:471–481

    Google Scholar 

  • Nout MJR, Bonants-van Laarhoven TMG, de Jongh P, de Koster PG (1987) Ergosterol content of Rhizophus oligoporus NRRL 5905 grown in liquid and solid substrates. Appl Microbiol Biotechnol 26:456–461

    Google Scholar 

  • Nylund JE, Wallander H (1992) Ergosterol analysis as a means of quantifying mycorrhizal biomass. Meth Microbiol 24:77–88

    Google Scholar 

  • Osswald WF, Höll W, Elstner EF (1986) Ergosterol as biochemical indicator of fungal infection in spruce and fir needles from different sources. Z Naturforsch 4/C:542–546

    Google Scholar 

  • Padgett DE, Posey MH (1993) An evaluation of the efficiencies of several ergosterol extraction techniques. Mycol Res 97:1476–1480

    Google Scholar 

  • Parkinson D, Domsch KH, Anderson JPE (1978) Die Entwicklung mikrobieller Biomassen im organischen Horizont eines Fichtenstandortes. Oecol Plant 13:355–366

    Google Scholar 

  • Peacock GA, Goosey MW (1989) Separation of fungal sterols by normal-phase high-performance liquid chromatography: application to the evaluation of ergosterol biosynthesis inhibitors. J Chromat 469:293–304

    Google Scholar 

  • Salmanowicz B, Nylund JE (1988) High performance liquid chromatography determination of ergosterol as a measure of ectomycorrhiza infection of Scots pine. Eur J For Path 18:291–298

    Google Scholar 

  • Schnürer J (1993) Comparison of methods for estimating the biomass of three food-borne fungi with different growth patterns. Appl Environ Microbiol 59:552–555

    Google Scholar 

  • Schnürer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem 17:611–618

    Google Scholar 

  • Scholle G, Joergensen RG, Wolters V (1993a) Mikrobieller Biomasse-Kohlenstoff und Ergosterol in einem natürlichen und gekalkten Moderprofil: “litter-bag”-Experiment zur Wirkung der Mesofauna. Mitteilgn Dtsch Bodenkundl Gesellsch 72:627–630

    Google Scholar 

  • Scholle G, Joergensen RG, Schaefer M, Wolters V (1993b) Hexosamines in the organic layer of two beech forest soils: Effects of mesofauna exclusion. Biol Fertil Soils 15:301–307

    Google Scholar 

  • Seitz LM, Mohr HE, Burroughs R, Sauer DB (1977) Ergosterol as an indicator of fungal invasion in grains. Cereal Chem 54:1207–1217

    Google Scholar 

  • Seitz LM, Sauer DB, Burroughs R, Mohr ME, Hubbard JD (1979) Ergosterol as a measure of fungal growth. Phytopathology 69:1202–1203

    Google Scholar 

  • Vancura V, Kunc F (1977) The effect of streptomycin and actidione on respiration in the rhizosphere and non-rhizosphere soil. Zbl Bakt Abt II 132:472–478

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial C. Soil Biol Biochem 19:703–707

    Google Scholar 

  • Weete JD, Weber DJ (1980) Lipid biochemistry of fungi and other organisms. Plenum Publishing, New York

    Google Scholar 

  • Weete JD, Lawler GC, Laseter JL (1973) Total lipid and sterol component of Rhizopus arrhizus: identification and metabolism. Biophys 155:411–419

    Google Scholar 

  • West AW, Grant WD, Sparling GP (1987) Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol Biochem 19:607–612

    Google Scholar 

  • Wolters V, Joergensen RG (1992) Die mikrobielle Biomasse in Böden der Sukzessionsreihe Acker-Brache-Wald. VDLUFA-Schriftenr 35:883–886

    Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction — an automated procedure. Soil Biol Biochem 22:1167–1169

    Google Scholar 

  • Zelles L, Hund K, Stepper K (1987) Methoden zur relativen Quantifizierung der pilzlichen Biomasse im Boden. Z Pflanzenernähr Bodenkd 150:249–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djajakirana, G., Joergensen, R.G. & Meyer, B. Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22, 299–304 (1996). https://doi.org/10.1007/BF00334573

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334573

Key words

Navigation