Skip to main content

Advertisement

Log in

Personalized Interventions: A Reality in the Next 20 Years or Pie in the Sky

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

There is no better representation of the need for personalization of care than the breadth and complexity of congenital heart disease. Advanced imaging modalities are now standard of care in the field, and the advancements being made to three-dimensional visualization technologies are growing as a means of pre-procedural preparation. Incorporating emerging modeling approaches, such as computational fluid dynamics, will push the limits of our ability to predict outcomes, and this information may be both obtained and utilized during a single procedure in the future. Artificial intelligence and customized devices may soon surface as realistic tools for the care of patients with congenital heart disease, as they are showing growing evidence of feasibility within other fields. This review illustrates the great strides that have been made and the persistent challenges that exist within the field of congenital interventional cardiology, a field which must continue to innovate and push the limits to achieve personalization of the interventions it provides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stout KK, Broberg CS, Book WM et al (2016) Chronic heart failure in congenital heart disease: a scientific statement from the American Heart Association. Circulation 133:1–33. https://doi.org/10.1161/CIR.0000000000000352

    Article  Google Scholar 

  2. Bonnichsen C, Ammash N (2016) Choosing between MRI and CT imaging in the adult with congenital heart disease. Curr Cardiol Rep. https://doi.org/10.1007/s11886-016-0717-x

    Article  PubMed  Google Scholar 

  3. Geva T (2006) Indications and timing of pulmonary valve replacement after tetralogy of fallot repair. Pediatr Card Surg Annu 9(1):11–22. https://doi.org/10.1053/j.pcsu.2006.02.009

    Article  Google Scholar 

  4. Geva T, Mulder B, Gauvreau K et al (2018) Preoperative predictors of death and sustained ventricular tachycardia after pulmonary valve replacement in patients with repaired tetralogy of Fallot enrolled in the indicator cohort. Circulation 138(19):2106–2115. https://doi.org/10.1161/CIRCULATIONAHA.118.034740

    Article  PubMed  Google Scholar 

  5. Syed M, Mohiaddin RH (eds) (2012) Magnetic resonance imaging of congenital heart disease. Springer, Berlin

    Google Scholar 

  6. Richardson RR (2013) Atlas of pediatric cardiac CTA. Springer, Berlin, https://doi.org/10.1007/978-1-4614-0088-2

    Article  Google Scholar 

  7. Grohmann J, Stiller B, Neumann E et al (2016) Bronchial compression following pulmonary artery stenting in single ventricle lesions: how to prevent, and how to decompress. Clin Res Cardiol 105(4):323–331. https://doi.org/10.1007/s00392-015-0924-2

    Article  CAS  PubMed  Google Scholar 

  8. Ferandos C, El-Sald H, Hamzeh R, Moore JW (2009) Adverse impact of vascular stent “mass effect” on airways. Catheter Cardiovasc Interv 74(1):132–136. https://doi.org/10.1002/ccd.21945

    Article  PubMed  Google Scholar 

  9. Ploch CC, Mansi CSSA, Jayamohan J, Kuhl E (2016) Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg 90:668–674. https://doi.org/10.1016/j.wneu.2016.02.081

    Article  PubMed  Google Scholar 

  10. Eisenmenger LB, Wiggins RH, Fults DW, Huo EJ (2017) Application of 3-dimensional printing in a case of osteogenesis imperfecta for patient education, anatomic understanding, preoperative planning, and intraoperative evaluation. World Neurosurg 107:1049.e1–1049.e7. https://doi.org/10.1016/j.wneu.2017.08.026

    Article  Google Scholar 

  11. Kusaka M, Sugimoto M, Fukami N et al (2015) Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transplant Proc 47(3):596–599. https://doi.org/10.1016/j.transproceed.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  12. Hu Y, Li H, Qiao G, Liu H, Ji A, Ye F (2011) Computer-assisted virtual surgical procedure for acetabular fractures based on real CT data. Injury 42(10):1121–1124. https://doi.org/10.1016/j.injury.2011.01.014

    Article  PubMed  Google Scholar 

  13. Zeng C, Xing W, Wu Z, Huang H, Huang W (2016) A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Injury 47(10):2223–2227. https://doi.org/10.1016/j.injury.2016.03.015

    Article  PubMed  Google Scholar 

  14. Schmauss D, Haeberle S, Hagl C, Sodian R (2014) Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardio-Thoracic Surg 47(6):1044–1052. https://doi.org/10.1093/ejcts/ezu310

    Article  Google Scholar 

  15. Yoo SJ, Spray T, Austin EH, Yun TJ, van Arsdell GS (2017) Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg 153(6):1530–1540. https://doi.org/10.1016/j.jtcvs.2016.12.054

    Article  PubMed  Google Scholar 

  16. Valverde I, Gomez G, Coserria JF et al (2015) 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv 85(6):1006–1012. https://doi.org/10.1002/ccd.25810

    Article  PubMed  Google Scholar 

  17. Sodian R, Schmauss D, Schmitz C et al (2009) 3-Dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg 88(3):974–978. https://doi.org/10.1016/j.athoracsur.2009.03.014

    Article  PubMed  Google Scholar 

  18. Salavitabar A, Chelliah A, Kalfa D, Crystal MA (2018) When a coronary artery fistula is not simply a fistula: using multimodality imaging to demonstrate an unusual embryologic remnant. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2018.02.032

    Article  PubMed  Google Scholar 

  19. Gillespie MJ, Benson LN, Bergersen L et al (2017) Patient selection process for the Harmony Transcatheter Pulmonary Valve early feasibility study. Am J Cardiol. 120(8):1387–1392. https://doi.org/10.1016/j.amjcard.2017.07.034

    Article  PubMed  Google Scholar 

  20. Zahn EM, Chang JC, Armer D, Garg R (2018) First human implant of the Alterra Adaptive PrestentTM: a new self-expanding device designed to remodel the right ventricular outflow tract. Catheter Cardiovasc Interv 91(6):1125–1129. https://doi.org/10.1002/ccd.27581

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chaowu Y, Hua L, Xin S (2004) Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency—in vitro trial occlusion based on a personalized heart model. Circulation 133:e608–610. https://doi.org/10.1161/CIRCULATIONAHA

    Article  Google Scholar 

  22. Vukicevic M, Mosadegh B, Min JK, Little SH (2017) Cardiac 3D printing and its future directions. J Am Coll Cardiol Imging 10(2):171–184. https://doi.org/10.1016/j.jcmg.2016.12.001

    Article  Google Scholar 

  23. Yoo S-J, Thabit O, Kim EK et al (2016) 3D printing in medicine of congenital heart diseases. 3D Print Med 2(3):1–12. https://doi.org/10.1186/s41205-016-0004-x

    Article  Google Scholar 

  24. Jolley MA, Lasso A, Nam HH et al (2019) Toward predictive modeling of catheter-based pulmonary valve replacement into native right ventricular outflow tracts. Catheter Cardiovasc Interv 93:E143–E152. https://doi.org/10.1002/ccd.27962

    Article  PubMed  Google Scholar 

  25. Gallagher AG, McClure N, McGuigan J, Crothers I, Browning J (1999) Virtual reality training in laparoscopic surgery: a preliminary assessment of minimally invasive surgical trainer virtual reality (MIST VR). Endoscopy. 31(4):310–313. https://doi.org/10.1055/s-1999-15

    Article  CAS  PubMed  Google Scholar 

  26. Tandon A, Burkhardt BEU, Batsis M et al (2018) Sinus venosus defects: anatomic variants and transcatheter closure feasibility using virtual reality planning. JACC Cardiovasc Imaging 12(5):921–924. https://doi.org/10.1016/j.jcmg.2018.10.013

    Article  PubMed  Google Scholar 

  27. Chen X, Xu L, Wang Y et al (2015) Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J Biomed Inform 55:124–131. https://doi.org/10.1016/j.jbi.2015.04.003

    Article  PubMed  Google Scholar 

  28. Fichtinger G, Kathuria S, Iordachita II et al (2014) MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc Intervent Radiol 37(6):1589–1596. https://doi.org/10.1007/s00270-014-0885-2

    Article  PubMed  Google Scholar 

  29. Wake N, Bjurlin MA, Rostami P, Chandarana H, Huang WC (2018) Three-dimensional printing and augmented reality: enhanced precision for robotic assisted partial nephrectomy. Urology 116:227–228. https://doi.org/10.1016/j.urology.2017.12.038

    Article  PubMed  Google Scholar 

  30. Sterliński M, Borucki BA, Szumowski Ł, Michałowska IM, Opolski MP, Nicińska B (2018) Augmented-reality computed tomography-guided transcatheter pacemaker implantation in dextrocardia and congenitally corrected transposition of great arteries. Cardiol J 25(3):412–413. https://doi.org/10.5603/cj.2018.0058

    Article  PubMed  Google Scholar 

  31. Opolski G, Balsam P, Lodziński PR, Kamiński J, Peller M (2018) First-in-man percutaneous pulmonary vein isolation enhanced by augmented reality system. Kardiol Polska 76(2):475–475. https://doi.org/10.5603/kp.2018.0046

    Article  PubMed  Google Scholar 

  32. Opolski MP, Staruch AD, Debski A et al (2017) Feasibility and safety of augmented-reality glass for computed tomography-assisted percutaneous revascularization of coronary chronic total occlusion: a single center prospective pilot study. J Cardiovasc Comput Tomogr 11(6):489–496. https://doi.org/10.1016/j.jcct.2017.09.013

    Article  PubMed  Google Scholar 

  33. Witowski J, Kownacki Ł, Pietrasik A et al (2019) Augmented reality and three-dimensional printing in percutaneous interventions on pulmonary arteries. Quant Imaging Med Surg. 9(1):23–29. https://doi.org/10.21037/qims.2018.09.08

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brun H, Bugge RAB, Suther LKR et al (2018) Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Eur Hear J Cardiovasc Imaging. 20(8):883–888

    Article  Google Scholar 

  35. Biglino G, Capelli C, Wray J et al (2015) 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 5(4):e007165. https://doi.org/10.1136/bmjopen-2014-007165

    Article  PubMed  PubMed Central  Google Scholar 

  36. Itatani K, Miyazaki S, Furusawa T et al (2017) New imaging tools in cardiovascular medicine: computational fluid dynamics and 4D flow MRI. Gen Thorac Cardiovasc Surg. 65:611–621. https://doi.org/10.1007/s11748-017-0834-5

    Article  PubMed  Google Scholar 

  37. Morris PD, Narracott A, von Tengg-Kobligk H et al (2016) Computational fluid dynamics modelling in cardiovascular medicine. Heart 102:18–28. https://doi.org/10.1136/heartjnl-2015-308044

    Article  PubMed  Google Scholar 

  38. DeCampli WM, Ricardo Argueta-Morales I, Divo E, Kassab AJ (2012) Computational fluid dynamics in congenital heart disease. Cardiol Young. 22:800–808. https://doi.org/10.1017/S1047951112002028

    Article  PubMed  Google Scholar 

  39. Lee J, Smith NP (2012) The multi-scale modelling of coronary blood flow. Ann Biomed Eng 40(11):2399–2413. https://doi.org/10.1007/s10439-012-0583-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen WX, Poon EKW, Hutchins N, Thondapu V, Barlis P, Ooi A (2017) Computational fluid dynamics study of common stent models inside idealised curved coronary arteries. Comput Methods Biomech Biomed Eng 20(6):671–681. https://doi.org/10.1080/10255842.2017.1289374

    Article  Google Scholar 

  41. Jin S, Yang Y, Oshinski J, Tannenbaum A, Gruden J, Giddens D (2004) Flow patterns and wall shear stress distributions at atherosclerotic-prone sites in a human left coronary artery—an exploration using combined methods of CT and computational fluid dynamics. Conf Proc IEEE End Med Biol Soc 5:3789–3791. https://doi.org/10.1109/iembs.2004.1404062

    Article  Google Scholar 

  42. Morlacchi S, Colleoni SG, Cárdenes R et al (2013) Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med Eng Phys 35:1272–1281. https://doi.org/10.1016/j.medengphy.2013.01.007

    Article  PubMed  Google Scholar 

  43. Rikhtegar F, Wyss C, Stok KS, Poulikakos D, Müller R, Kurtcuoglu V (2014) Hemodynamics in coronary arteries with overlapping stents. J Biomech 47:505–511. https://doi.org/10.1016/j.jbiomech.2013.10.048

    Article  PubMed  Google Scholar 

  44. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997. https://doi.org/10.1016/j.jacc.2011.06.066

    Article  PubMed  Google Scholar 

  45. Haggerty CM, Restrepo M, Tang E et al (2014) Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg 148(4):1481–1489. https://doi.org/10.1016/j.jtcvs.2013.11.060

    Article  PubMed  Google Scholar 

  46. Hsia T-Y, Migliavacca F, Pittaccio S et al (2004) Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. J Surg Res 116:305–313. https://doi.org/10.1016/j.jss.2003.08.004

    Article  PubMed  Google Scholar 

  47. Itatani K, Miyaji K, Tomoyasu T et al (2009) Optimal conduit size of the extracardiac fontan operation based on energy loss and flow stagnation. Ann Thorac Surg 88:565–573. https://doi.org/10.1016/j.athoracsur.2009.04.109

    Article  PubMed  Google Scholar 

  48. Tang E, Restrepo M, Haggerty CM et al (2014) Geometric characterization of patient specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc Imaging 7(3):215–224. https://doi.org/10.1016/j.jcmg.2013.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  49. Migliavacca F, Dubini G, Bove EL, de Leval MR (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125:805–813. https://doi.org/10.1115/1.1632523

    Article  PubMed  Google Scholar 

  50. Bove EL, De Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047. https://doi.org/10.1016/S0022-5223(03)00698-6

    Article  PubMed  Google Scholar 

  51. Dori Y, Sathanandam S, Glatz AC, Gillespie MJ, Rome JJ (2014) Catheter approach to redirect hepatic venous return for treatment of unilateral pulmonary arteriovenous malformations after Fontan. Catheter Cardiovasc Interv 84:86–93. https://doi.org/10.1002/ccd.25326

    Article  PubMed  Google Scholar 

  52. Mosbahi S, Mickaily-Huber E, Charbonnier D et al (2014) Computational fluid dynamics of the right ventricular outflow tract and of the pulmonary artery: a bench model of flow dynamics. Interact Cardiovasc Thorac Surg 19(4):611–616. https://doi.org/10.1093/icvts/ivu202

    Article  PubMed  Google Scholar 

  53. Berdajs D, Mosbahi S, Vos J, Charbonnier D, Hullin R, von Segesser LK (2015) Fluid dynamics simulation of right ventricular outflow tract oversizing. Interact Cardiovasc Thorac Surg 21:176–182. https://doi.org/10.1093/icvts/ivv108

    Article  PubMed  Google Scholar 

  54. Zhang W, Liu J, Yan Q, Liu J, Hong H, Mao L (2016) Computational haemodynamic analysis of left pulmonary artery angulation effects on pulmonary blood flow. Interact Cardiovasc Thorac Surg 23(4):519–525. https://doi.org/10.1093/icvts/ivw179

    Article  PubMed  Google Scholar 

  55. Rao AS, Menon PG (2015) Presurgical planning using image-based in silico anatomical and functional characterization of tetralogy of Fallot with associated anomalies. Interact Cardiovasc Thorac Surg 20(2):149–156. https://doi.org/10.1093/icvts/ivu368

    Article  PubMed  Google Scholar 

  56. Chen Z, Zhou Y, Wang J, Liu X, Ge S, He Y (2017) Modeling of coarctation of aorta in human fetuses using 3D/4D fetal echocardiography and computational fluid dynamics. Echocardiography 34:1858–1866. https://doi.org/10.1111/echo.13644

    Article  PubMed  Google Scholar 

  57. Patel ND, Sullivan PM, Takao CM, Badran S, Ahdoot J, Ing FF (2018) Unmasking the borderline coarctation: the utility of isoproterenol in the paediatric cardiac catheterisation laboratory. Cardiol Young 28:804–810. https://doi.org/10.1017/S1047951118000239

    Article  PubMed  Google Scholar 

  58. Ladisa JF Jr, Taylor CA, Feinstein JA (2010) Aortic coarctation: recent developments in experimental and computational methods to assess treatments for the simple condition. Prog Pediatr Cardiol 30(1):45–49. https://doi.org/10.1016/j.ppedcard.2010.09.006.AORTIC

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ladisa JF Jr, Dholakia RJ, Figueroa CA et al (2011) Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis 6(5):432–443. https://doi.org/10.1111/j.1747-0803.2011.00553.x.COMPUTATIONAL

    Article  PubMed  PubMed Central  Google Scholar 

  60. Olivieri LJ, de Zelicourt DA, Haggerty CM, Ratnayaka K, Cross RR, Yoganathan AP (2011) Hemodynamic modeling of surgically repaired coarctation of the aorta. Cardiovasc Eng Technol 2(4):288–295. https://doi.org/10.1007/s13239-011-0059-1

    Article  PubMed  PubMed Central  Google Scholar 

  61. Szopos M, Poussineau N, Maday Y et al (2014) Computational modeling of blood flow in the aorta—insights into eccentric dilatation of the ascending aorta after surgery for coarctation. J Thorac Cardiovasc Surg 148:1572–1582. https://doi.org/10.1016/j.jtcvs.2013.11.055

    Article  PubMed  Google Scholar 

  62. Neugebauer M, Glöckler M, Goubergrits L, Kelm M, Kuehne T, Hennemuth A (2016) Interactive virtual stent planning for the treatment of coarctation of the aorta. Int J CARS 11:133–144. https://doi.org/10.1007/s11548-015-1220-3

    Article  Google Scholar 

  63. Kwon S, Feinstein JA, Dholakia RJ, Ladisa JF Jr (2014) Quantification of local hemodynamic alterations caused by virtual implantation of three commercially-available stents for the treatment of aortic coarctation. Pediatr Cardiol 35(4):732–740. https://doi.org/10.1007/s00246-013-0845-7

    Article  PubMed  Google Scholar 

  64. Aldoss O, Fonseca BM, Truong UT et al (2016) Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization. Pediatr Cardiol 37(7):1211–1221. https://doi.org/10.1007/s00246-016-1418-3

    Article  PubMed  Google Scholar 

  65. Haddad L, Waller BR, Johnson J et al (2016) Radiation protocol for three-dimensional rotational angiography to limit procedural radiation exposure in the pediatric cardiac catheterization lab. Congenit Heart Dis 11:637–646. https://doi.org/10.1111/chd.12356

    Article  PubMed  Google Scholar 

  66. Nguyen HH, Balzer DT, Murphy JJ, Nicolas R, Shahanavaz S (2016) Radiation exposure by three-dimensional rotational angiography (3DRA) during trans-catheter melody pulmonary valve procedures (TMPV) in a pediatric cardiac catheterization laboratory. Pediatr Cardiol 37:1429–1435. https://doi.org/10.1007/s00246-016-1453-0

    Article  PubMed  Google Scholar 

  67. Glöckler M, Halbfaß J, Koch A, Achenbach S, Dittrich S (2013) Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease—a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 82(3):436–442. https://doi.org/10.1002/ccd.24646

    Article  PubMed  Google Scholar 

  68. Fagan T, Kay J, Carroll J, Neubauer A (2012) 3-D guidance of complex pulmonary artery stent placement using reconstructed rotational angiography with live overlay. Catheter Cardiovasc Interv 79(3):414–421. https://doi.org/10.1002/ccd.23229

    Article  PubMed  Google Scholar 

  69. Goreczny S, Morgan GJ, Dryzek P (2016) Live 3D image overlay for arterial duct closure with Amplatzer Duct Occluder II additional size. Cardiol Young 26(3):605–608. https://doi.org/10.1017/S1047951115001638

    Article  PubMed  Google Scholar 

  70. Poterucha JT, Foley TA, Taggart NW (2014) Percutaneous pulmonary valve implantation in a native outflow tract -3-dimensional DynaCT rotational angiographic reconstruction and 3-dimensional printed model. JACC Cardiovasc Interv 7(10):e151–e152. https://doi.org/10.1016/j.jcin.2014.03.015

    Article  PubMed  Google Scholar 

  71. Parimi M, Buelter J, Thanugundla V et al (2018) Feasibility and validity of printing 3D heart models from rotational angiography. Pediatr Cardiol 39:653–658. https://doi.org/10.1007/s00246-017-1799-y

    Article  PubMed  Google Scholar 

  72. Armstrong AK, Zampi JD, Itu LM, Benson LN (2019) Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.28507

    Article  PubMed  Google Scholar 

  73. Lee H, Tajmir S, Lee J et al (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30:427–441. https://doi.org/10.1007/s10278-017-9955-8

    Article  PubMed  PubMed Central  Google Scholar 

  74. Freer TW, Ulissey MJ (2001) Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology 220(3):781–786

    Article  CAS  Google Scholar 

  75. Prevedello LM, Erdal BS, Ryu JL et al (2017) Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285(3):923–931. https://doi.org/10.1148/radiol.2017162664

    Article  PubMed  Google Scholar 

  76. American Society of Echocardiography (2018) Echovation challenge 2018: team on-sight—1st place winner. https://www.asecho.org/echovation-challenge-2018/finalist-1/

  77. Algorithms for Health: AI at the “heart” of new medical technology. Weizmann Compass Stories & Discoveries. https://www.weizmann.ac.il/WeizmannCompass/sections/people-behind-the-science/algorithms-for-health. 2018.

  78. Merema BJ, Kraeima J, ten Duis K et al (2017) The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery. Injury 48(11):2540–2547. https://doi.org/10.1016/j.injury.2017.08.059

    Article  CAS  PubMed  Google Scholar 

  79. Les AS, Ohye RG, Filburn AG, Ghadimi Mahani M, Flanagan CL, Daniels RC, Kidwell KM, Zopf DA, Hollister SJ, Green GE (2019) 3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. Laryngoscope 129(8):1763–1771. https://doi.org/10.1002/lary.27863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sundermann SH, Gessat M, Cesarovic N et al (2013) Implantation of personalized, biocompatible mitral annuloplasty rings: feasibility study in an animal model. Interact Cardiovasc Thorac Surg 16:417–422. https://doi.org/10.1093/icvts/ivs531

    Article  PubMed  PubMed Central  Google Scholar 

  81. Siallagan D, Loke YH, Olivieri L et al (2018) Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics. J Thorac Cardiovasc Surg 155(4):1734–1742. https://doi.org/10.1016/j.jtcvs.2017.11.068

    Article  PubMed  Google Scholar 

  82. Mayer JE, Shin’oka T, Shum-Tim D (1997) Tissue engineering of cardiovascular structures. Curr Opin Cardiol. 12:528–532. https://doi.org/10.1097/00001573-199711000-00005

    Article  PubMed  Google Scholar 

  83. Shinoka T, Miyachi H (2016) Current status of tissue engineering heart valve. World J Pediatr Congenit Hear Surg 7(6):677–684. https://doi.org/10.1177/2150135116664873

    Article  Google Scholar 

  84. Voges I, Bräsen JH, Entenmann A et al (2013) Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur J Cardio-thoracic Surg 44(4):272–279. https://doi.org/10.1093/ejcts/ezt328

    Article  Google Scholar 

  85. Cebotari S, Lichtenberg A, Tudorache I et al (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114(SUPPL. 1):132–137. https://doi.org/10.1161/CIRCULATIONAHA.105.001065

    Article  Google Scholar 

  86. Schmidt D, Achermann J, Odermatt B et al (2007) Prenatally fabricated autologous human living heart valves based on amniotic fluid-derived progenitor cells as single cell source. Circulation 116:64–70. https://doi.org/10.1161/CIRCULATIONAHA.106.681494

    Article  Google Scholar 

  87. Schmidt D, Mol A, Breymann C et al (2006) Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation 114:125–131. https://doi.org/10.1161/CIRCULATIONAHA.105.001040

    Article  Google Scholar 

  88. Schmidt D, Dijkman PE, Driessen-Mol A et al (2010) Minimally-invasive implantation of living tissue engineered heart valves. J Am Coll Cardiol 56(6):510–520. https://doi.org/10.1016/j.jacc.2010.04.024

    Article  PubMed  Google Scholar 

  89. Schmitt B, Spriestersbach H, O H-Ici D et al (2016) Percutaneous pulmonary valve replacement using completely tissue-engineered off-the-shelf heart valves: six-month in vivo functionality and matric remodelling in sheep. EuroIntervention 12(1):62–70

    Article  Google Scholar 

  90. Spriestersbach H, Prudlo A, Bartosch M et al (2017) First percutaneous implantation of a completely tissue-engineered self-expanding pulmonary heart valve prosthesis using a newly developed delivery system: a feasibility study in sheep. Cardiovasc Interv Ther 32(1):36–47

    Article  CAS  Google Scholar 

  91. Maragiannis D, Jackson MS, Igo SR et al (2015) Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging 8(10):1–8. https://doi.org/10.1161/CIRCIMAGING.115.003626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee K. Armstrong.

Ethics declarations

Conflict of interest

Author Armstrong has received research grants from Siemens Medical Solutions USA, Inc, Edwards Lifesciences, and Medtronic Inc. Author Armstrong is a consultant for Edwards Lifesciences and Medtronic, Inc.

Ethical Approval

This article does not contain any previously unpublished studies with human participants, performed by either of the authors. This article does not contain any studies with animals performed by either of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salavitabar, A., Armstrong, A.K. Personalized Interventions: A Reality in the Next 20 Years or Pie in the Sky. Pediatr Cardiol 41, 486–502 (2020). https://doi.org/10.1007/s00246-020-02303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02303-4

Keywords

Navigation