Skip to main content
Log in

High and intermediate risk pulmonary embolism in the ICU

  • Narrative Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Pulmonary embolism (PE) is a common and important medical emergency, encountered by clinicians across all acute care specialties. PE is a relatively uncommon cause of direct admission to the intensive care unit (ICU), but these patients are at high risk of death. More commonly, patients admitted to ICU develop PE as a complication of an unrelated acute illness. This paper reviews the epidemiology, diagnosis, risk stratification, and particularly the management of PE from a critical care perspective. Issues around prevention, anticoagulation, fibrinolysis, catheter-based techniques, surgical embolectomy, and extracorporeal support are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wendelboe A, Raskob GE (2016) Global burden of thrombosis: epidemiologic aspects. Circ Res 118(9):1340–1347

    Article  CAS  PubMed  Google Scholar 

  2. Tagalakis V, Patenaude V, Kahn SR et al (2013) Incidence of and mortality from venous thromboembolism in a real-world population: the Q-VTE Study Cohort. Am J Med 126(9):832.e13–21

    Article  PubMed  Google Scholar 

  3. Becattini C, Agnelli G, Lankeit M et al (2016) Acute pulmonary embolism: mortality prediction by the 2014 European Society of Cardiology risk stratification model. Eur Respir J 48(3):780–786

    Article  PubMed  Google Scholar 

  4. Barco S, Mahmoudpour SH, Valerio L et al (2020) Trends in mortality related to pulmonary embolism in the European Region, 2000–15: analysis of vital registration data from the WHO Mortality Database. Lancet Respir Med 8(3):277–287

    Article  PubMed  Google Scholar 

  5. Zuin M, Bikdeli B, Armero A et al (2023) Trends in pulmonary embolism deaths among young adults aged 25 to 44 years in the United States, 1999 to 2019. Am J Cardiol 202(1):169–175

    Article  PubMed  Google Scholar 

  6. Osman M, Subedi SK, Ahmed A et al (2018) Computed tomography pulmonary angiography is overused to diagnose pulmonary embolism in the emergency department of academic community hospital. J Community Hosp Intern Med Perspect 8(1):6–10

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kwok CS, Wong CW, Lovatt S (2022) Misdiagnosis of pulmonary embolism and missed pulmonary embolism: A systematic review of the literature. Health Sci Rev 3(1):100022

    Google Scholar 

  8. Winterton D, Bailey M, Pilcher D et al (2017) Characteristics, incidence and outcome of patients admitted to intensive care because of pulmonary embolism. Respirology 22(2):329–337

    Article  PubMed  Google Scholar 

  9. Jiménez D, Bikdeli B, Barrios D et al (2018) Epidemiology, patterns of care and mortality for patients with hemodynamically unstable acute symptomatic pulmonary embolism. Int J Cardiol 269(1):327–333

    Article  PubMed  Google Scholar 

  10. Couturaud F, Bertoletti L, Pastre J et al (2021) Prevalence of pulmonary embolism among patients with COPD hospitalized with acutely worsening respiratory symptoms. JAMA 325(1):59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prandoni P, Lensing AW, Prins MH et al (2016) PESIT investigators. Prevalence of pulmonary embolism among patients hospitalized for syncope. N Engl J Med 375(16):1524–1531

    Article  PubMed  Google Scholar 

  12. Poyiadji N, Cormier P, Patel PY et al (2020) Pulmonary embolism and COVID-19. Radiology 297(3):335–338

    Article  Google Scholar 

  13. Eck RJ, Hulshof L, Wiersema R et al (2021) Incidence, prognostic factors, and outcomes of venous thromboembolism in critically ill patients: data from two prospective cohort studies. Crit Care 25(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  14. Viarasilpa T, Panyavachiraporn N, Jordan J et al (2020) Venous thromboembolism in neurocritical care patients. J Intensive Care Med 35(11):1226–1234

    Article  PubMed  Google Scholar 

  15. Cook D, Crowther M, Meade M et al (2005) Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med 33(7):1565–1571

    Article  PubMed  Google Scholar 

  16. Kakkar VV, Howe CT, Flanc C et al (1969) Natural history of postoperative deep-vein thrombosis. Lancet 2(7614):230–232

    Article  CAS  PubMed  Google Scholar 

  17. Zhang P, Bian Y, Xu F et al (2020) The incidence and characteristics of venous thromboembolism in neurocritical care patients: a prospective observational study. Clin Appl Thromb Hemost 26:107602962090795

    Article  Google Scholar 

  18. Konstantinides SV, Meyer G, Becattini C et al (2020) ESC scientific document group. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 41(4):543–603

    Article  PubMed  Google Scholar 

  19. Goldhaber SZ, Visani L, De Rosa M et al (1999) Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 353(9162):1386–1389

    Article  CAS  PubMed  Google Scholar 

  20. Meyer G, Vieillard-Baron A, Planquette B (2016) Recent advances in the management of pulmonary embolism: focus on the critically ill patients. Ann Intensive Care 1(1):19

    Article  Google Scholar 

  21. Jiménez D, Kopecna D, Tapson V et al (2014) Derivation and validation of multimarker prognostication for normotensive patients with acute symptomatic pulmonary embolism. Am J Respir Crit Care Med 189(6):718–726

    Article  PubMed  Google Scholar 

  22. Anderson FA, Spencer FA (2003) Risk factors for venous thromboembolism. Circulation 107(23_S1):I9-16

    PubMed  Google Scholar 

  23. Pollack CV, Schreiber D, Goldhaber SZ et al (2011) Clinical characteristics, management, and outcomes of patients diagnosed with acute pulmonary embolism in the emergency department: initial report of EMPEROR (Multicenter Emergency Medicine Pulmonary Embolism in the Real World Registry). J Am Coll Cardiol 57(6):700–706

    Article  PubMed  Google Scholar 

  24. Aujesky D, Obrosky DS, Stone RA et al (2005) Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 172(8):1041–1046

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fernando SM, Tran A, Cheng W et al (2022) VTE prophylaxis in critically ill adults: a systematic review and network meta-analysis. Chest 161(2):418–428

    Article  CAS  PubMed  Google Scholar 

  26. McMahon MMJ, Holley CAB (2022) To generalize or not to generalize?: the approach to VTE prophylaxis in the ICU. Chest 161(2):305–306

    Article  PubMed  Google Scholar 

  27. Kahn SR, Lim W, Dunn AS et al (2012) Prevention of VTE in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 141(2):e195S-e226S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaplan D, Casper TC, Elliott CG et al (2015) VTE incidence and risk factors in patients with severe sepsis and septic shock. Chest 148(5):1224–1230

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kakkos S, Kirkilesis G, Caprini JA et al (2022) Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism. Cochrane Database Syst Rev 1(1):1

    Google Scholar 

  30. Arabi YM, Al-Hameed F, Burns KEA et al (2019) Adjunctive intermittent pneumatic compression for venous thromboprophylaxis. N Engl J Med 380(14):1305–1315

    Article  PubMed  Google Scholar 

  31. Gifford RW, Groves LK (1969) Limitations in the feasibility of pulmonary embolectomy. A clinicopathologic study of 101 cases of massive pulmonary embolism. Circulation 39(4):523–530

    Article  PubMed  Google Scholar 

  32. Klok FA, Mos IC, Nijkeuter M et al (2008) Simplification of the revised Geneva score for assessing clinical probability of pulmonary embolism. Arch Intern Med 168(19):2131–2136

    Article  PubMed  Google Scholar 

  33. Wells PS, Anderson DR, Rodger M et al (2000) Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb Haemost 83(3):416–420

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed Mahmoud MA, Alkhatip A, Donnelly M et al (2020) Predictive accuracies in pulmonary embolism based on the gold standard CT pulmonary angiography. Crit Care Med 48(5):704–708

    Article  Google Scholar 

  35. Roy PM, Friou E, Germeau B et al (2021) Derivation and validation of a 4-level clinical pretest probability score for suspected pulmonary embolism to safely decrease imaging testing. JAMA Cardiol 6(6):669–677

    Article  PubMed  Google Scholar 

  36. Ceriani E, Combescure C, Le Gal G et al (2010) Clinical prediction rules for pulmonary embolism: a systematic review and meta-analysis. J Thrombosis Haemostasis 8(5):957–970

    Article  CAS  Google Scholar 

  37. Ehmann MR, Mitchell J, Levin S et al (2023) Renal outcomes following intravenous contrast administration in patients with acute kidney injury: a multi-site retrospective propensity-adjusted analysis. Intensive Care Med 49(2):205–215

    Article  CAS  PubMed  Google Scholar 

  38. Kasper W, Konstantinides S, Geibel A et al (1997) Management strategies and determinants of outcome in acute major pulmonary embolism: results of a multicenter registry. J Am Coll Cardiol 30(5):1165–1171

    Article  CAS  PubMed  Google Scholar 

  39. Quiroz R, Kucher N, Schoepf UJ et al  (2004) Right ventricular enlargement on chest computed tomography: prognostic role in acute pulmonary embolism. Circulation 109(20):2401–2404

    Article  PubMed  Google Scholar 

  40. Vieillard-Baron A, Qanadli SD, Antakly Y et al (1998) Transesophageal echocardiography for the diagnosis of pulmonary embolism with acute cor pulmonale: a comparison with radiological procedures. Intensive Care Med 24(5):429–433

    Article  CAS  PubMed  Google Scholar 

  41. Elfwén L, Lagedal R, Nordberg P et al (2019) Direct or subacute coronary angiography in out-of-hospital cardiac arrest (DISCO)-An initial pilot-study of a randomized clinical trial. Resuscitation 139(1):253–261

    Article  PubMed  Google Scholar 

  42. Bellesini M, Robert-Ebadi H, Combescure C (2021) D-dimer to rule out venous thromboembolism during pregnancy: a systematic review and meta-analysis. J Thromb Haemost 19(10):2454

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mehdipoor G, Jimenez D, Bertoletti L et al (2022) Imaging modalities for confirming pulmonary embolism during pregnancy: results from a multicenter international study. Eur Radiol 32(2):1238

    Article  PubMed  Google Scholar 

  44. Kline JA, Williams G, Hernandez-Nino J (2005) D-dimer concentrations in normal pregnancy: new diagnostic thresholds are needed. Clin Chem 51(5):825

    Article  CAS  PubMed  Google Scholar 

  45. Jiménez D, Aujesky D, Moores L et al (2010) Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 170(15):1383–1389

    Article  PubMed  Google Scholar 

  46. Cimini LA, Candeloro M, Pływaczewska M et al (2023) Prognostic role of different findings at echocardiography in acute pulmonary embolism: a critical review and meta-analysis. ERJ Open Res 9(2):00641–02022

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meinel FG, Nance JW, Schoepf UJ et al (2015) Predictive value of computed tomography in acute pulmonary embolism: systematic review and meta-analysis. Am J Med 128(7):747–759

    Article  PubMed  Google Scholar 

  48. Bach AG, Nansalmaa B, Kranz J et al (2015) CT pulmonary angiography findings that predict 30-day mortality in patients with acute pulmonary embolism. Eur J Radiol 84(2):332–337

    Article  PubMed  Google Scholar 

  49. Doyen D, Castellani M, Moceri P et al (2014) Patent foramen ovale and stroke in intermediate-risk pulmonary embolism. Chest 146(4):967–973

    Article  PubMed  Google Scholar 

  50. Barrios D, Rosa-Salazar V, Morillo R et al (2017) Prognostic significance of right heart thrombi in patients with acute symptomatic pulmonary embolism: systematic review and meta-analysis. Chest 151(2):409–416

    Article  PubMed  Google Scholar 

  51. Vonk Noordegraaf A, Chin KM, Haddad F et al (2019) Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respirat J 53(1):1801900

    Article  Google Scholar 

  52. Lyhne MD, Kabrhel C, Giordano N et al (2021) The echocardiographic ratio tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure predicts short-term adverse outcomes in acute pulmonary embolism. Eur Heart J Cardiovasc Imaging 22(3):285–294

    Article  PubMed  Google Scholar 

  53. Vieillard-Baron A, Augarde PBR et al (2001) Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med 27(9):1481–1486

  54. Scherz N, Labarère J, Méan M et al (2010) Prognostic importance of hyponatremia in patients with acute pulmonary embolism. Am J Respir Crit Care Med 182(9):1178–1183

    Article  PubMed  PubMed Central  Google Scholar 

  55. Siemieniuk RAC, Chu DK, Kim LH et al (2018) Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ 363(1):k4169

    Article  PubMed  Google Scholar 

  56. Dessap AM, Boissier F, Charron C et al (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42(5):862–870

    Article  Google Scholar 

  57. Hong AW, Toppen W, Lee J et al (2023) Outcomes and prognostic factors of pulmonary hypertension patients undergoing emergent endotracheal intubation. J Intensive Care Med 38(3):280–289

    Article  PubMed  Google Scholar 

  58. Vieillard-Baron A, Prigent A, Repessé X et al (2020) Right ventricular failure in septic shock: characterization, incidence and impact on fluid responsiveness. Crit Care 24(1):630

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ghignone M, Girling L, Prewitt RM (1984) Volume expansion versus norepinephrine in treatment of a low cardiac output complicating an acute increase in right ventricular afterload in dogs. Anesthesiology 60(2):132–135

    Article  CAS  PubMed  Google Scholar 

  60. Taylor RR, Covell JW, Sonnenblick EH et al (1967) Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 213(3):711–718

    Article  CAS  PubMed  Google Scholar 

  61. Mercat A, Diehl JL, Meyer G et al (1999) Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med 27(3):540–544

    Article  CAS  PubMed  Google Scholar 

  62. Helms J, Carrier M, Klok FA (2023) High-risk pulmonary embolism in the intensive care unit. Intensive Care Med 49(5):579–582

    Article  PubMed  Google Scholar 

  63. Pesenti A, Slobod D, Magder S (2023) The forgotten relevance of central venous pressure monitoring. Intensive Care Med 49:868

    Article  PubMed  Google Scholar 

  64. Vlahakes GJ, Turley K, Hoffman JI (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63(1):87–95

    Article  CAS  PubMed  Google Scholar 

  65. Groetzinger LM, Williams J, Svec S et al (2022) Peripherally infused norepinephrine to avoid central venous catheter placement in a medical intensive care unit: a pilot study. Ann Pharmacother 56(7):773–781

    Article  PubMed  Google Scholar 

  66. Lyhne MD, Dragsbaek SJ, Hansen JV et al (2021) Levosimendan, milrinone, and dobutamine in experimental acute pulmonary embolism. Pulm Circ 11(3):1

    Article  CAS  Google Scholar 

  67. Poor HD, Ventetuolo CE (2012) Pulmonary hypertension in the intensive care unit. Prog Cardiovasc Dis 55(2):187–198

    Article  PubMed  Google Scholar 

  68. Capellier G, Jacques T, Balvay P et al (1997) Inhaled nitric oxide in patients with pulmonary embolism. Intensive Care Med 23(10):1089–1092

    Article  CAS  PubMed  Google Scholar 

  69. Kline JA, Puskarich MA, Jones AE et al (2019) Inhaled nitric oxide to treat intermediate risk pulmonary embolism: a multicenter randomized controlled trial. Nitric Oxide 84(1):60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Andersen A, Waziri F, Schultz JG et al (2021) Pulmonary vasodilation by sildenafil in acute intermediate-high risk pulmonary embolism: a randomized explorative trial. BMC Pulm Med 21(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Piazza G (2020) Advanced management of intermediate- and high-risk pulmonary embolism. J Am Coll Cardiol 76(18):2117–2127

    Article  PubMed  Google Scholar 

  72. Bikdeli B, Chatterjee S, Desai NR et al (2017) Inferior vena cava filters to prevent pulmonary embolism: systematic review and meta-analysis. J Am Coll Cardiol 70(1):1587–1597

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goldhaber SZ, Haire WD, Feldstein ML et al (1993) Alteplase versus heparin in acute pulmonary embolism: randomised trial assessing right-ventricular function and pulmonary perfusion. Lancet 341(8844):507–511

    Article  CAS  PubMed  Google Scholar 

  74. Dalla-Volta S, Palla A, Santolicandro A et al (1992) PAIMS 2: alteplase combined with heparin versus heparin in the treatment of acute pulmonary embolism. Plasminogen activator Italian multicenter study 2. J Am Coll Cardiol 20(3):520–526

    Article  CAS  PubMed  Google Scholar 

  75. Lavonas EJ, Drennan IR, Gabrielli A et al (2015) Part 10: special circumstances of resuscitation: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132(18):S501–S518

    PubMed  Google Scholar 

  76. Kearon C, Akl EA, Comerota AJ et al (2012) Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 141(2):4195

    Article  Google Scholar 

  77. Riva N, Puljak L, Moja L et al (2018) Multiple overlapping systematic reviews facilitate the origin of disputes: the case of thrombolytic therapy for pulmonary embolism. J Clin Epidemiol 97:1–13

    Google Scholar 

  78. Meyer G, Vicaut E, Danays T et al (2014) Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med 370(15):1402–1411

    Article  CAS  PubMed  Google Scholar 

  79. Marti C, John G, Konstantinides S et al (2014) Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis. Eur Heart J 36(10):605–614

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chatterjee S, Chakraborty A, Weinberg I et al (2014) Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA 311(23):2414–2421

    Article  PubMed  Google Scholar 

  81. Konstantinides SV, Vicaut E, Danays T et al (2017) Impact of thrombolytic therapy on the long-term outcome of intermediate-risk pulmonary embolism. J Am Coll Cardiol 69(12):1536–1544

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Z, Zhai ZG, Liang LR et al (2014) Lower dosage of recombinant tissue-type plasminogen activator (rt-PA) in the treatment of acute pulmonary embolism: a systematic review and meta-analysis. Thromb Res 133(3):357–363

    Article  CAS  PubMed  Google Scholar 

  83. Sharifi M, Bay C, Skrocki L et al (2013) Moderate pulmonary embolism treated with thrombolysis (from the “MOPETT” Trial). Am J Cardiol 111(2):273–277

    Article  PubMed  Google Scholar 

  84. Barco S, Vicaut E, Klok FA et al (2018) Improved identification of thrombolysis candidates amongst intermediate-risk pulmonary embolism patients: implications for future trials. Eur Respirat J 51(1):1701775

    Article  Google Scholar 

  85. Sanchez O, Charles-Nelson A, Ageno W et al (2022) Reduced-dose intravenous thrombolysis for acute intermediate-high-risk pulmonary embolism: rationale and design of the pulmonary embolism international thrombolysis (PEITHO)-3 trial. Thromb Haemost 122(5):857–866

    Article  PubMed  Google Scholar 

  86. Bhalla A, Attaran R (2020) Mechanical circulatory support to treat pulmonary embolism: venoarterial extracorporeal membrane oxygenation and right ventricular assist devices. Tex Heart Inst J 47(3):202–206

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sim HT, Jo MS, Chang YJ (2023) Outcome of massive pulmonary embolism treated only with extracorporeal membrane oxygenation and anticoagulation without thrombolytic therapy or surgical embolectomy. Perfusion. https://doi.org/10.1177/02676591231164878

    Article  PubMed  Google Scholar 

  88. Meneveau N, Guillon B, Planquette B et al (2018) Outcomes after extracorporeal membrane oxygenation for the treatment of high-risk pulmonary embolism: a multicentre series of 52 cases. Eur Heart J 39(47):4196–4204

    Article  PubMed  Google Scholar 

  89. Corsi F, Lebreton G, Bréchot N et al (2017) Life-threatening massive pulmonary embolism rescued by venoarterial-extracorporeal membrane oxygenation. Critical Care (Lond, Engl) 21(1):76

    Article  Google Scholar 

  90. Karami M, Mandigers L, Miranda DDR et al (2021) Survival of patients with acute pulmonary embolism treated with venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. J Crit Care 64(1):245–254

    Article  CAS  PubMed  Google Scholar 

  91. George B, Parazino M, Omar HR et al (2018) A retrospective comparison of survivors and non-survivors of massive pulmonary embolism receiving veno-arterial extracorporeal membrane oxygenation support. Resuscitation 122(1):1–5

    Article  PubMed  Google Scholar 

  92. Goldberg JB, Spevack DM, Ahsan S et al (2022) Comparison of surgical embolectomy and veno-arterial extracorporeal membrane oxygenation for massive pulmonary embolism. Semin Thorac Cardiovasc Surg 34(3):934–942

    Article  PubMed  Google Scholar 

  93. Chopard R, Nielsen P, Ius F, Cebotari S et al (2022) Optimal reperfusion strategy in acute high-risk pulmonary embolism requiring extracorporeal membrane oxygenation support: a systematic review and meta-analysis. Eur Respirat J 60(5):2102977

    Article  Google Scholar 

  94. Samaranayake C, Garfield B, Seitler S et al (2021) Right ventricular assist devices for mechanical circulatory support in acute massive pulmonary embolism: a single centre experience. Eur Respir J DOI: 10.1183/13993003.congress-2021.OA2594

    Google Scholar 

  95. Alhasan F, Rayes H, Girgla S et al (2022) Percutaneous ventricular assist device fracture in the right ventricle and its retrieval. JACC Case Rep 4(1):982–986

    Article  PubMed  PubMed Central  Google Scholar 

  96. Goldberg JB, Spevack DM, Ahsan S et al (2020) Survival and right ventricular function after surgical management of acute pulmonary embolism. J Am Coll Cardiol 76(8):903–911

    Article  PubMed  Google Scholar 

  97. Meneveau N, Séronde MF, Blonde MC et al (2006) Management of unsuccessful thrombolysis in acute massive pulmonary embolism. Chest 129(4):1043–1050

    Article  PubMed  Google Scholar 

  98. Cho YH, Sung K, Kim WS et al (2016) Management of acute massive pulmonary embolism: is surgical embolectomy inferior to thrombolysis? Int J Cardiol 203(1):579–583

    Article  PubMed  Google Scholar 

  99. Azari A, Beheshti AT, Moravvej Z et al (2015) Surgical embolectomy versus thrombolytic therapy in the management of acute massive pulmonary embolism: short and long-term prognosis. Heart Lung J Crit Care 44(4):335–339

    Article  Google Scholar 

  100. Jarman AF, Mumma BE, Singh KS et al (2021) Crucial considerations: sex differences in the epidemiology, diagnosis, treatment, and outcomes of acute pulmonary embolism in non-pregnant adult patients. J Am Coll Emergency Phys 2(1):e12378

    Google Scholar 

  101. Giri J, Sista AK, Weinberg I et al (2019) Interventional therapies for acute pulmonary embolism: current status and principles for the development of novel evidence: a scientific statement from the American Heart Association. Circulation 140(20):e774–e801

    Article  PubMed  Google Scholar 

  102. Avgerinos ED, Jaber W, Lacomis J et al (2021) Randomized trial comparing standard versus ultrasound-assisted thrombolysis for submassive pulmonary embolism: the SUNSET sPE trial. JACC Cardiovasc Interv 14(12):1364–1373

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sadeghipour P, Jenab Y, Moosavi J et al (2022) Catheter-directed thrombolysis vs anticoagulation in patients with acute intermediate-high-risk pulmonary embolism: the CANARY randomized clinical trial. JAMA Cardiol 7(12):1189–1197

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kucher N, Boekstegers P, Müller OJ et al (2014) Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation 129(4):479–486

    Article  PubMed  Google Scholar 

  105. Piazza G, Hohlfelder B, Jaff MR et al (2015) A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study. JACC Cardiovasc Interv 8(10):1382–1392

    Article  PubMed  Google Scholar 

  106. Piazza G, Sterling KM, Tapson VF et al (2020) One-year echocardiographic, functional, and quality of life outcomes after ultrasound-facilitated catheter-based fibrinolysis for pulmonary embolism. Circ Cardiovasc Interv 13(8):e009012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tapson VF, Sterling K, Jones N et al (2018) A randomized trial of the optimum duration of acoustic pulse thrombolysis procedure in acute intermediate-risk pulmonary embolism: the OPTALYSE PE trial. JACC Cardiovasc Interv 11(14):1401–1410

    Article  PubMed  Google Scholar 

  108. Bashir R, Foster M, Iskander A et al (2022) Pharmacomechanical catheter-directed thrombolysis with the bashir endovascular catheter for acute pulmonary embolism: the RESCUE study. JACC Cardiovasc Interv 15(23):2427–2436

    Article  PubMed  Google Scholar 

  109. Tu T, Toma C, Tapson VF et al (2019) A prospective, single-arm, multicenter trial of catheter-directed mechanical thrombectomy for intermediate-risk acute pulmonary embolism: the FLARE study. JACC Cardiovasc Interv 12(9):859–869

    Article  PubMed  Google Scholar 

  110. Sista AK, Horowitz JM, Tapson VF et al (2021) Indigo aspiration system for treatment of pulmonary embolism: results of the EXTRACT-PE trial. JACC Cardiovasc Interv 14(3):319–329

    Article  PubMed  Google Scholar 

  111. Klok FA, Piazza G, Sharp ASP et al (2022) Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: rationale and design of the HI-PEITHO study. Am Heart J 251(1):43–53

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Vieillard-Baron.

Ethics declarations

Conflicts of interest

DB receives research support from and consults for LivaNova. He has been on the medical advisory boards for Abiomed, Xenios, Medtronic, Inspira and Cellenkos. He is the President-elect of the Extracorporeal Life Support Organization (ELSO) and the Chair of the Executive Committee of the International ECMO Network (ECMONet), and he writes for UpToDate. FH receives NIH and industry support for research, but none related to this paper. TL receives support from the NIH, Department of Veterans Affairs, and Borstein Family Foundation, but none related to this paper. GP received research grants from BMS/Pfizer, Janssen, Alexion, Bayer, Amgen, BSC, and Esperion, and has advisory roles for BSC, Amgen, BCRI, PERC, NAMSA, BMS, Janssen, and Regeneron. LS reports personal fees from Janssen and Janssen and MSD not related to this paper. AVB received fees from Air Liquide healthcare as a medical advisory board member for conducting clinical research on NO inhalation in COVID-19. The remainder of authors declare no relevant conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 109 KB)

Supplementary file2 (PDF 137 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millington, S.J., Aissaoui, N., Bowcock, E. et al. High and intermediate risk pulmonary embolism in the ICU. Intensive Care Med 50, 195–208 (2024). https://doi.org/10.1007/s00134-023-07275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-023-07275-6

Keywords

Navigation