Skip to main content
Log in

Long and Short Time Behavior of Non-local in Time Subdiffusion Equations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is devoted to studying the long and short time behavior of the solutions to a class of non-local in time subdiffusion equations. To this end, we find sharp estimates of the fundamental solutions in Lebesgue spaces using tools of the theory of Volterra equations. Our results include, as particular cases, the so-called time-fractional and the ultraslow reaction-diffusion equations, which have seen much interest during the last years, mostly due to their applications in the modeling of anomalous diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation, encyclopedia of mathematics and its applications, vol. 27. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  2. Bonaccorsi, S., Da Prato, G., Tubaro, L.: Asymptotic behavior of a class of nonlinear stochastic heat equations with memory effects. SIAM J. Math. Anal. 44(3), 1562–1587 (2012). https://doi.org/10.1137/110841795

    Article  MathSciNet  Google Scholar 

  3. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6(3), 259–279 (2003)

    MathSciNet  Google Scholar 

  4. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A 38(42), L679–L684 (2005). https://doi.org/10.1088/0305-4470/38/42/L03

    Article  MathSciNet  Google Scholar 

  5. Chechkin, A.V., Gonchar, V.Y., Gorenflo, R., Korabel, N., Sokolov, I.M.: Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev. E 78(2), 021111–021113 (2008). https://doi.org/10.1103/PhysRevE.78.021111

    Article  MathSciNet  Google Scholar 

  6. Clément, P., Nohel, J.A.: Abstract linear and nonlinear Volterra equations preserving positivity. SIAM J. Math. Anal. 10(2), 365–388 (1979). https://doi.org/10.1137/0510035

    Article  MathSciNet  Google Scholar 

  7. Clément, P., Nohel, J.A.: Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12(4), 514–535 (1981). https://doi.org/10.1137/0512045

    Article  MathSciNet  Google Scholar 

  8. Davies, E.B.: Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989). https://doi.org/10.1017/CBO9780511566158

    Book  Google Scholar 

  9. Eichinger, T., Winter, S.: Regularly varying functions, generalized contents, and the spectrum of fractal strings. In: Horizons of fractal geometry and complex dimensions, Contemp. Math., vol. 731, pp. 63–94. Amer. Math. Soc., Providence (2019). https://doi.org/10.1090/conm/731/14673

    Chapter  Google Scholar 

  10. Escobedo, M., Zuazua, E.: Large time behavior for convection-diffusion equations in \({ R}^N\). J. Funct. Anal. 100(1), 119–161 (1991). https://doi.org/10.1016/0022-1236(91)90105-E

    Article  MathSciNet  Google Scholar 

  11. Feller, W.: An introduction to probability theory and its applications, vol. II, 2nd edn. Wiley, New York (1971)

    Google Scholar 

  12. Folland, G.B.: Real analysis, modern techniques and their applications, pure and applied mathematics: a Wiley-Interscience Publication, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  13. Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_{t}=\Delta u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966)

    Google Scholar 

  14. Galaktionov, V.A., Vázquez, J.L.: The problem of blow-up in nonlinear parabolic equations. Discret. Contin. Dyn. Syst. 8, 399–433 (2002). https://doi.org/10.3934/dcds.2002.8.399. (current developments in partial differential equations (Temuco, 1999))

    Article  MathSciNet  Google Scholar 

  15. Giusti, A.: Dispersion relations for the time-fractional Cattaneo–Maxwell heat equation. J. Math. Phys. 59(1), 013506–013512 (2018). https://doi.org/10.1063/1.5001555

    Article  MathSciNet  Google Scholar 

  16. Gripenberg, G., Londen, S.O., Staffans, O.: Volterra integral and functional equations, encyclopedia of mathematics and its applications, vol. 34. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511662805

    Book  Google Scholar 

  17. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rational. Mech. Anal. 31(2), 113–126 (1968). https://doi.org/10.1007/BF00281373

    Article  MathSciNet  Google Scholar 

  18. Ignat, L.I., Stan, D.: Asymptotic behavior of solutions to fractional diffusion-convection equations. J. Lond. Math. Soc. 97(2), 258–281 (2018). https://doi.org/10.1112/jlms.12110

    Article  MathSciNet  Google Scholar 

  19. Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb{R} ^d\). Math. Ann. 366(3–4), 941–979 (2016). https://doi.org/10.1007/s00208-015-1356-z

    Article  MathSciNet  Google Scholar 

  20. Kemppainen, J., Siljander, J., Zacher, R.: Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Diff. Equ. 263(1), 149–201 (2017). https://doi.org/10.1016/j.jde.2017.02.030

    Article  MathSciNet  Google Scholar 

  21. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008). https://doi.org/10.1016/j.jmaa.2007.08.024

    Article  MathSciNet  Google Scholar 

  22. Levin, J.J.: Resolvents and bounds for linear and nonlinear Volterra equations. Trans. Amer. Math. Soc. 228, 207–222 (1977). https://doi.org/10.2307/1998527

    Article  MathSciNet  Google Scholar 

  23. Mascia, C.: Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discret. Contin. Dyn. Syst. 35(8), 3569–3584 (2015). https://doi.org/10.3934/dcds.2015.35.3569

    Article  MathSciNet  Google Scholar 

  24. Meerschaert, M.M., Scheffler, H.P.: Stochastic model for ultraslow diffusion. Stoch. Process. Appl. 116(9), 1215–1235 (2006). https://doi.org/10.1016/j.spa.2006.01.006

    Article  MathSciNet  Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000). https://doi.org/10.1016/S0370-1573(00)00070-3

    Article  MathSciNet  Google Scholar 

  26. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004). https://doi.org/10.1088/0305-4470/37/31/R01

    Article  MathSciNet  Google Scholar 

  27. Nakagawa, J., Sakamoto, K., Yamamoto, M.: Overview to mathematical analysis for fractional diffusion equations—new mathematical aspects motivated by industrial collaboration. J. Math. Ind. 2A, 99–108 (2010)

    MathSciNet  Google Scholar 

  28. Pozo, J.C., Vergara, V.: Fundamental solutions and decay of fully non-local problems. Discret. Contin. Dyn. Syst. A 39, 639–666 (2019). https://doi.org/10.3934/dcds.2019026

    Article  MathSciNet  Google Scholar 

  29. Prüss, J.: Evolutionary integral equations and applications. Modern Birkhäuser Classics Birkhäuser/Springer, Basel (1993). https://doi.org/10.1007/978-3-0348-8570-6 . ([2012] reprint of the 1993 edition)

    Book  Google Scholar 

  30. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein functions, De Gruyter studies in mathematics, theory and applications, vol. 37. Walter de Gruyter & Co., Berlin (2010)

    Google Scholar 

  31. Solís, S., Vergara, V.: A non-linear stable non-Gaussian process in fractional time. Topol. Methods Nonlinear Anal. 59(2B), 987–1028 (2022). https://doi.org/10.12775/tmna.2021.048

  32. Vergara, V., Zacher, R.: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM J. Math. Anal. 47(1), 210–239 (2015). https://doi.org/10.1137/130941900

    Article  MathSciNet  Google Scholar 

  33. Vázquez, J.L.: Asymptotic behaviour methods for the heat equation. Convergence to the Gaussian. Preprint at arXiv:1706.10034 (2018)

Download references

Acknowledgements

We would like to dedicate this paper to the memory of Professor Jan Prüss, whose significant contributions to the theory of evolution equations have been a constant inspiration for our work. Further, the second author had the privilege of being formed and collaborating with Jan, and his generosity of sharing ideas left a lasting impression on him. We would also like to thank the referee for the valuable comments, suggestions and corrections proposed in different parts of the document. These comments really enhanced the quality and presentation of our previous work.

Funding

The work of the Juan C. Pozo was partially supported by Chilean research grant of Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT 1221271. The work of the Vicente Vergara was partially supported by Chilean research grant Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT 1190255

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Vergara.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozo, J.C., Vergara, V. Long and Short Time Behavior of Non-local in Time Subdiffusion Equations. Appl Math Optim 89, 50 (2024). https://doi.org/10.1007/s00245-024-10116-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10116-7

Keywords

Mathematics Subject Classification

Navigation