Skip to main content
Log in

Low Perturbations and Combined Effects of Critical and Singular Nonlinearities in Kirchhoff Problems

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study three-dimensional Kirchhoff equations with critical growth and singular nonlinearity. We are concerned with the qualitative analysis of solutions to the following nonlocal problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\left( a+b\displaystyle \int _{\Omega }|\nabla u|^2dx\right) \Delta u=\lambda u^{-\gamma }+u^5, &{}\mathrm {in}\ \ \Omega , \\ u>0, &{}\mathrm {in}\ \ \Omega , \\ u=0, &{}\mathrm {on}\ \ \partial \Omega , \end{array}\right. } \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^3\) is a bounded domain with smooth boundary, \(0<\gamma <1\), and \(a,\,b,\,\lambda \) are positive constants. By combining variational methods with some delicate decomposition techniques, we obtain the existence of two positive solutions in the case of low perturbations of the singular nonlinearity, namely for small values of the parameter \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  Google Scholar 

  2. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)

    Article  MATH  Google Scholar 

  3. Azzollini, A.: The elliptic Kirchhoff equation in \({\mathbb{R} }^N\) perturbed by a local nonlinearity. Differ. Integr. Equ. 25, 543–554 (2012)

    MATH  Google Scholar 

  4. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MATH  Google Scholar 

  5. Canino, A., Degiovanni, M.: Nonsmooth critical point theory and quasilinear elliptic equations, in Topological Methods in Differential Equations and Inclusions (Montréal, 1994), In: NATO ASI series, C, Vol. 472, Kluwer, Dordrecht, 1–50 (1995)

  6. Chen, C., Kuo, Y., Wu, T.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)

    Article  MATH  Google Scholar 

  7. Chen, S., Zhang, B., Tang, X.: Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. 9(1), 148–167 (2020)

    Article  MATH  Google Scholar 

  8. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)

    Article  MATH  Google Scholar 

  9. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R} }^3\). J. Funct. Anal. 269, 3500–3527 (2015)

    Article  MATH  Google Scholar 

  10. Díaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman, Londres (1985)

  11. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  Google Scholar 

  12. Fulks, W., Maybee, J.S.: A singular nonlinear equation. Osaka Math. J. 12, 1–19 (1960)

    MATH  Google Scholar 

  13. Figueiredo, G.M.: Existence of a positive for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401, 706–713 (2013)

    Article  MATH  Google Scholar 

  14. He, X., Zou, W.: Existence and concentration of positive solutions for a Kirchhoff equation in \({\mathbb{R} }^3\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  MATH  Google Scholar 

  15. Huang, Y.S., Liu, Z., Wu, Y.: On Kirchhoff type equations with critical Sobolev exponent. J. Math. Anal. Appl. 462, 483–504 (2018)

    Article  MATH  Google Scholar 

  16. Hirano, N., Saccon, C., Shioji, N.: Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities. Adv. Differ. Equ. 9, 197–220 (2004)

    MATH  Google Scholar 

  17. Ioffe, A., Schwartzman, E.: Metric critical point theory I, Morse regularity and homotopic stability of a minimum. J. Math. Pures Appl. 75, 125–153 (1996)

    MATH  Google Scholar 

  18. Júnior, J.R.S., Siciliano, G.: Positive solutions for a Kirchhoff problem with vanishing nonlocal term. J. Differ. Equ. 265, 2034–2043 (2018)

    Article  MATH  Google Scholar 

  19. Katriel, G.: Mountain pass theorems and global homeomorphism theorems. Ann. Inst. H. Poincaré, Anal. Non Linéaire 11, 73–100 (1994)

    Article  MATH  Google Scholar 

  20. Kirchhoff, G.: Mechanik. Tübner, Leipzig (1883)

    MATH  Google Scholar 

  21. Lei, C.Y., Liao, J.F., Tang, C.L.: Multiple positive solutions for Kirchhoff type of problem with singularity and critical exponents. J. Math. Anal. Appl. 421, 521–538 (2015)

    Article  MATH  Google Scholar 

  22. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)

    Article  MATH  Google Scholar 

  23. Li, Y.Y., Zhu, M.: Uniqueness theorem through the method of moving spheres. Duke Math. J. 80, 383–417 (1995)

    Article  MATH  Google Scholar 

  24. Liu, J.Q., Guo, Y.X.: Critical point theory for nonsmooth functions. Nonlinear Anal. 66, 2731–2741 (2007)

    Article  MATH  Google Scholar 

  25. Molica Bisci, G., Rădulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  26. Mukherjee, T., Pucci, P., Xiang, M.: Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems. Discrete Contin. Dyn. Syst. 42, 163–187 (2022)

    Article  MATH  Google Scholar 

  27. Nachman, A., Callegari, A.: A nonlinear singular boundary value problem in the theory of pseudo plastic fluids. SIAM J. Appl. Math. 38, 275–281 (1980)

    Article  MATH  Google Scholar 

  28. Naimen, D.: The critical problem of Kirchhoff type elliptic equations in dimension four. J. Differ. Equ. 257, 1168–1193 (2014)

    Article  MATH  Google Scholar 

  29. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)

    Article  MATH  Google Scholar 

  30. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113, 1–24 (1981)

    Article  MATH  Google Scholar 

  31. Shi, S.Z.: Ekeland’s variational principle and the mountain pass lemma. Acta Math. Sinica 1, 348–355 (1985)

    Article  MATH  Google Scholar 

  32. Taliaferro, S.D.: A nonlinear singular boundary value problem. Nonlinear Anal. 3, 897–904 (1979)

    Article  MATH  Google Scholar 

  33. Tintarev, K., Fieseler, K.H.: Concentration Compactness: Functional-Analytic Grounds and Applications. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  34. Wang, L., Xie, K., Zhang, B.L.: Existence and multiplicity of solutions for critical Kirchhoff-type \(p\)-Laplacian problems. J. Math. Anal. Appl. 458, 361–378 (2018)

    Article  MATH  Google Scholar 

  35. Wang, L., Cheng, K., Zhang, B.: A uniqueness result for strong singular Kirchhoff-type fractional Laplacian problems. Appl. Math. Optim. 83, 1859–1875 (2021)

    Article  MATH  Google Scholar 

  36. Yamabe, H.: On a deformation of Riemannian structures on compact manifold. Osaka Math. J. 12, 21–37 (1960)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to the anonymous referees and editors for their valuable comments. Chunyu Lei is supported by Science and Technology Foundation of Guizhou Province (No. KJ[2019]1163). The research of Vicenţiu D. Rădulescu was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PCE 137/2021, within PNCDI III. Binlin Zhang was supported by the National Natural Science Foundation of China (No. 11871199), the Heilongjiang Province Postdoctoral Startup Foundation, PR China (LBH-Q18109), and the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binlin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix contains two lemmas. In Lemma \(A_1\), we give the proof of Lemma 3.6, which is an application of the Ekeland’s variational principle, and adapted from [31]. In Lemma \(A_2\), we show that the functional \(I_\lambda \) fails to satisfy the concrete Palais-Smale condition at the level \(\mu _1\), by finding a sequence \(\{u_n\}\) of \(I_\lambda \) such that \(I_\lambda (u_n)\rightarrow \mu _1\), \(|dI_\lambda |(u_n)\rightarrow 0\), but \(\{u_n\}\) possesses no convergent subsequence in \(H_0^1(\Omega )\). Consequently, \(\mu _1\) is exactly the threshold value for \(I_\lambda \), since we have proved in Proposition 3.4 that below \(\mu _1\), the functional \(I_\lambda \) satisfies the concrete Palais-Smale condition.

Lemma

\(A_1\). Let \(c_1^*\) be the Mountain Pass value as defined in (3.29). Then there exists a concrete Palais-Smale sequence of \(I_\lambda \) at the level \(c_1^*\), that is a sequence \(\{u_n\}\) such that \(I_\lambda (u_n)\rightarrow c_1^*\) and \(|dI_\lambda |(u_n)\rightarrow 0\) as \(n\rightarrow \infty \).

Proof

We first recall (3.30) as follows:

$$\begin{aligned} \Gamma =\left\{ \sigma |\sigma \in C([0, 1], P): \sigma (0)=u, I_\lambda (\sigma (1))\le 0, \Vert \sigma (1)\Vert \ge 100\rho \right\} . \end{aligned}$$

As a closed subset of C([0, 1], P), \(\Gamma \) is a complete metric space. For \(g\in \Gamma \), define

$$\begin{aligned} F(g)=\sup _{t\in [0,1]}I_\lambda (g(t)). \end{aligned}$$

Then F is continuous in \(\Gamma \). By relation (3.26), we have

$$\begin{aligned} F(g)\ge \inf _{u\in \partial B_\rho }I_\lambda (u)\ge \frac{1}{6}a\rho ^2. \end{aligned}$$

Therefore, F(g) is bounded from below.

Given \(\varepsilon >0\), by Ekeland’s variational principle, there exists \(g\in \Gamma \) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} F(g)\le \inf _{h\in \Gamma }F(h)+\varepsilon =c_1^*+\varepsilon , \\ F(g)\le F(h)+\varepsilon \Vert g-h\Vert , ~~~ h\in \Gamma . \end{array}\right. } \end{aligned}$$

Denote

$$\begin{aligned} {\widetilde{M}}(g)=\left\{ t\in [0,1]|I_\lambda (g(t))=F(g)=\sup _{s\in [0,1]}I_\lambda (g(s))\right\} . \end{aligned}$$

Then

$$\begin{aligned} c_1^*\le I_\lambda (g(t))\le c_1^*+\varepsilon ,~~\mathrm {for}~t\in {\widetilde{M}}(g). \end{aligned}$$

We claim that there exists \(t_\varepsilon \in {\widetilde{M}}(g)\) such that \(|dI_\lambda |(g(t_\varepsilon ))\le \varepsilon \), which completes the proof. Otherwise, for all \(t\in {\widetilde{M}}(g)\), \(|dI_\lambda |(g(t_\varepsilon ))>\varepsilon \). By the definition, for \(t\in {\widetilde{M}}(g)\), there exists \(v(t)\in P\) such that

$$\begin{aligned} \displaystyle \lambda \int _{\Omega }g^{-\gamma }(t)(v(t)-g(t))dx> & {} \displaystyle M\left( \int _{\Omega }|\nabla g(t)|^2dx\right) \int _{\Omega }\nabla g(t)\nabla (v(t)-g(t))dx\nonumber \\&\displaystyle -\int _{\Omega }g^5(t)(v(t)-g(t))dx+\varepsilon \Vert v(t)-g(t)\Vert .\qquad \,\, \end{aligned}$$
(4.1)

By the Fatou lemma, in a neighborhood \(B_{\delta (t)}(t)\) of t in [0, 1], it holds that

$$\begin{aligned} \displaystyle \lambda \int _{\Omega }g^{-\gamma }(s)(v(t)-g(s))dx> & {} \displaystyle M\left( \int _{\Omega }|\nabla g(s)|^2dx\right) \int _{\Omega }\nabla g(s)\nabla (v(t)-g(s))dx\\&\displaystyle -\int _{\Omega }g^5(s)(v(t)-g(s))dx+\varepsilon \Vert v(t)-g(s)\Vert \end{aligned}$$

for \(s\in B_{\delta (t)}(t)\).

We may assume \(B_{\delta (t)}(t)\cap \{0,1\}=\emptyset \), since \(I_\lambda (g(0))<0\), \(I_\lambda (g(1))<0\), \(\{B_{\delta (t)}(t)|t\in {\widetilde{M}}(g)\}\) is an open covering of \({\widetilde{M}}(g)\). There exists a finite covering \(B_i=B_{\delta (t_i)}(t_i)\), \(i=1,2,...,n\). Let

$$\begin{aligned} \varphi _0(t)=\mathrm {dist}\left( t,\bigcup _{i=1}^nB_i\right) ,\ \varphi _i(t)=\mathrm {dist}\left( t,[0,1]\backslash B_i\right) , i=1,2,...,n. \end{aligned}$$

\(\varphi _0(t)=0\) for \(t\in {\widetilde{M}}(g)\) and \(\varphi _i(0)=\varphi _i(1)=0\) for \(i=1,2,...,n\). Also define

$$\begin{aligned} \psi _i(t)=\frac{\varphi _i(t)}{\sum _{i=0}^n\varphi _i(t)},~t\in [0,1];\ \omega (t)=\sum _{i=1}^n\psi _i(t)(v(t_i)-g(t)),~t\in [0,1]. \end{aligned}$$

For \(t\in {\widetilde{M}}(g)\), by (4.1) we have

$$\begin{aligned}&\displaystyle M\left( \int _{\Omega }|\nabla g(t)|^2dx\right) \int _{\Omega }\nabla g(t)\nabla \omega (t)dx-\int _{\Omega }g^5(t)\omega (t)dx-\lambda \int _{\Omega }g^{-\gamma }(t)\omega (t)dx\\&\quad <\displaystyle -\varepsilon \sum _{i=1}^n\psi _i(t)\Vert v(t_i)-g(t)\Vert \\&\quad \le \displaystyle -\varepsilon \Vert \sum _{i=1}^n\psi _i(t)(v(t_i)-g(t))\Vert =\displaystyle -\varepsilon \Vert \omega (t)\Vert . \end{aligned}$$

Hence \(\omega (t)\ne 0\) for \(t\in {\widetilde{M}}(g)\). There exists \(\delta >0\) such that \(\Vert \omega (t)\Vert \ge \delta \) for \(t\in {\widetilde{M}}(g)\). Let \(\varphi (t)=\min \left\{ 1, \frac{\delta }{\Vert \omega (t)\Vert }\right\} \), \(t\in [0,1]\), then \(\varphi \in C([0,1], {\mathbb {R}}^+)\). Define

$$\begin{aligned} {\left\{ \begin{array}{ll} h(t)=\varphi (t)\omega (t), ~~ t\in [0,1],\\ \Vert h\Vert =\delta ,~\Vert h(t)\Vert =\delta , ~~~ t\in {\widetilde{M}}(g). \end{array}\right. } \end{aligned}$$

Since \(h(0)=h(1)=0\), for \(\tau \) small enough, \(g+\tau h\in \Gamma \), we have

$$\begin{aligned} \displaystyle F(g) \le \displaystyle F(g+\tau h)+\varepsilon \Vert \tau h\Vert =\displaystyle F(g+\tau h)+\varepsilon \tau \delta . \end{aligned}$$
(4.2)

Choose \(t=t(\tau )\in {\widetilde{M}}(g+\tau h)\), one has

$$\begin{aligned} I_\lambda (g(t(\tau ))+\tau h(t(\tau )))\ge I_\lambda (g(s)+\tau h(s)),~~\mathrm {for}~s\in [0,1]. \end{aligned}$$

Let \(\tau _n\rightarrow 0^+\), \(t_n=t(\tau _n)\rightarrow t_\varepsilon \), we have

$$\begin{aligned} I_\lambda (g(t_\varepsilon ))\ge I_\lambda (g(s)),~~\mathrm {for}~s\in [0,1]. \end{aligned}$$

Thus, \(t_\varepsilon \in {\widetilde{M}}(g)\). It follows from (4.2) that

$$\begin{aligned} \displaystyle -\varepsilon \delta \le \displaystyle \frac{1}{\tau _n}[F(g+\tau _n h)-F(g)] \le \displaystyle \frac{1}{\tau _n}[I_\lambda (g(t_n)+\tau _nh(t_n))-I_\lambda (g(t_n))]. \end{aligned}$$
(4.3)

Taking the limit \(n\rightarrow \infty \) in (4.3), by the Fatou’s lemma we obtain

$$\begin{aligned} \displaystyle -\varepsilon \delta\le & {} \displaystyle M\left( \int _{\Omega }|\nabla g(t_\varepsilon )|^2dx\right) \int _{\Omega }\nabla g(t_\varepsilon )\nabla h(t_\varepsilon )dx\\&\displaystyle -\int _{\Omega }g^5(t_\varepsilon )h(t_\varepsilon )dx-\lambda \int _{\Omega }g^{1-\gamma }(t_\varepsilon )h(t_\varepsilon )dx\\\le & {} \displaystyle \varphi (t_\varepsilon )\bigg \{M\left( \int _{\Omega }|\nabla g(t_\varepsilon )|^2dx\right) \int _{\Omega }\nabla g(t_\varepsilon )\nabla \omega (t_\varepsilon )dx\\&\displaystyle -\int _{\Omega }g^5(t_\varepsilon )\omega (t_\varepsilon )dx-\lambda \int _{\Omega }g^{1-\gamma }(t_\varepsilon )\omega (t_\varepsilon )dx\bigg \}\\< & {} \displaystyle -\varphi (t_\varepsilon )\cdot \varepsilon \Vert \omega (t_\varepsilon )\Vert =-\varepsilon \delta , \end{aligned}$$

which is a contradiction. Hence, the proof is completed. \(\square \)

Here we use the notations \(U, U_\varepsilon , \eta , \varphi _\varepsilon =\eta U_\varepsilon \) and \(t_0\) as in Lemma 3.7. In particular, \(U, t_0\) satisfy the equation (3.33), and let u be the local minimizer of \(I_1\) obtained in Lemma 3.3.

Lemma

\(A_2\). Let \(u_\varepsilon =u+t_0\varphi _\varepsilon \). Then \(I_\lambda (u_\varepsilon )\rightarrow \mu _1\), \(|dI_\lambda |(u_\varepsilon )\rightarrow 0\), \(u_\varepsilon \rightharpoonup u\), but \(\int _{\Omega }|\nabla u_\varepsilon |^2dx=\int _{\Omega }|\nabla u|^2dx+t_0^2\int _{{\mathbb {R}}^3}|\nabla U|^2dx+o(1)\). Hence \(u_\varepsilon \) (\(\varepsilon \rightarrow 0\)) is a concrete Palais-Smale sequence of \(I_\lambda \) at the level \(\mu _1\), but possesses no convergent subsequence in \(H_0^1(\Omega )\).

Proof

Using the estimate for the integrals involving \(\varphi _\varepsilon \), we have

$$\begin{aligned} \int _{\Omega }|\nabla u_\varepsilon |^2dx=\int _{\Omega }|\nabla u|^2dx+t_0^2\int _{{\mathbb {R}}^3}|\nabla U|^2dx+o(1). \end{aligned}$$

Hence we deduce as \(\varepsilon \rightarrow 0\)

$$\begin{aligned} I_\lambda (u_\varepsilon )\rightarrow & {} \displaystyle \frac{1}{2}{\mathcal {M}}\left( \int _{\Omega }|\nabla u|^2dx+{\mathcal {F}}_1\Big (\int _{\Omega }|\nabla u|^2dx\Big )\right) -\frac{1}{6}\int _{\Omega }u^6dx\\&\displaystyle -\frac{\lambda }{1-\gamma }\int _{\Omega }u^{1-\gamma }dx-\frac{1}{6}S^{-3}{\mathcal {F}}_1^3\left( \int _{\Omega }|\nabla u|^2dx\right) =\displaystyle \mu _1. \end{aligned}$$

For \(v\in P\), denote

$$\begin{aligned} \omega _\varepsilon =v-u_\varepsilon . \end{aligned}$$

By estimating, we show

$$\begin{aligned} M\left( \int _{\Omega }|\nabla u_\varepsilon |^2dx\right) \int _{\Omega }\nabla u_\varepsilon \nabla \omega _\varepsilon dx=\displaystyle \int _{\Omega }u_\varepsilon ^5\omega _\varepsilon dx+\lambda \int _{\Omega }u_\varepsilon ^{-\gamma }\omega _\varepsilon dx+o(1)\Vert \omega _\varepsilon \Vert , \end{aligned}$$

which means

$$\begin{aligned} |dI_\lambda |(u_\varepsilon )=o(1)~~\mathrm {as}~\varepsilon \rightarrow 0. \end{aligned}$$

Note that \(u_\varepsilon =u+t\varphi _\varepsilon \) and \(\varphi _\varepsilon =\eta U_\varepsilon \). Then we have

$$\begin{aligned}&\displaystyle \bigg |M\Big (\int _{\Omega }|\nabla u_\varepsilon |^2dx\Big )\int _{\Omega }\nabla u_\varepsilon \nabla \omega _\varepsilon dx\nonumber \\&\qquad \displaystyle -M\Big (\int _{\Omega }|\nabla u|^2dx+{\mathcal {F}}_1\Big (\int _{\Omega }|\nabla u|^2dx\Big )\Big )\Big (\int _{\Omega }\nabla u\nabla \omega _\varepsilon dx+t_0\int _{\Omega }\nabla U_\varepsilon \nabla \omega _\varepsilon dx\Big )\bigg |\nonumber \\&\quad \le \displaystyle \bigg |M\Big (\int _{\Omega }|\nabla u_\varepsilon |^2dx\Big )-M\Big (\int _{\Omega }|\nabla u|^2dx+{\mathcal {F}}_1\Big (\int _{\Omega }|\nabla u|^2dx\Big )\Big )\bigg |\left| \int _{\Omega }\nabla u_\varepsilon \nabla \omega _\varepsilon dx\right| \nonumber \\&\qquad \displaystyle +\bigg |M\Big (\int _{\Omega }|\nabla u|^2dx+{\mathcal {F}}_1\Big (\int _{\Omega }|\nabla u|^2dx\Big )\Big )\int _{\Omega }\nabla (u_\varepsilon -u)\nabla \omega _\varepsilon dx\nonumber \\&\qquad \displaystyle -M\Big (\int _{\Omega }|\nabla u|^2dx+{\mathcal {F}}_1\Big (\int _{\Omega }|\nabla u|^2dx\Big )\Big )t_0\int _{\Omega }\nabla U_\varepsilon \nabla \omega _\varepsilon dx\bigg |\nonumber \\&\quad \le \displaystyle o(1)\Vert \omega _\varepsilon \Vert +M\Big (\int _{\Omega }|\nabla u|^2dx+{\mathcal {F}}_1\Big (\int _{\Omega }|\nabla u|^2dx\Big )\Big )t_0\nonumber \\&\qquad \times \left| \int _{\Omega }[\nabla (\eta U_\varepsilon )-\nabla U_\varepsilon ]\nabla \omega _\varepsilon dx\right| \nonumber \\&\quad \le \displaystyle o(1)\Vert \omega _\varepsilon \Vert +C\left( \int _{\{|x|\ge \delta \}}(|\nabla U_\varepsilon |^2+U^2_\varepsilon )dx\right) ^{\frac{1}{2}}\Vert \omega _\varepsilon \Vert =\displaystyle o(1)\Vert \omega _\varepsilon \Vert . \end{aligned}$$
(4.4)

In the above we assume \(\eta (x)=1\) for \(|x|\le \delta \). Moreover, we also have

$$\begin{aligned}&\displaystyle \left| \int _{\Omega }u_\varepsilon ^5\omega _\varepsilon dx-\int _{\Omega }u^5\omega _\varepsilon dx-t^5_0\int _{\Omega }U_\varepsilon ^5\omega _\varepsilon dx\right| \nonumber \\&\quad \le \displaystyle C\int _{\Omega }u^4\varphi _\varepsilon |\omega _\varepsilon |dx+C\int _{\Omega }u^3\varphi _\varepsilon ^2|\omega _\varepsilon | dx+C\int _{\Omega }u^2\varphi _\varepsilon ^3|\omega _\varepsilon | dx\nonumber \\&\qquad \displaystyle +C\int _{\Omega }u\varphi _\varepsilon ^4|\omega _\varepsilon |dx+C\int _{\Omega }|(\eta U_\varepsilon )^5-U_\varepsilon ^5||\omega _\varepsilon |dx\nonumber \\&\quad \le \displaystyle o(1)\Vert \omega _\varepsilon \Vert +C\int _{\{|x|\ge \delta \}}U_\varepsilon ^5|\omega _\varepsilon |dx =\displaystyle o(1)\Vert \omega _\varepsilon \Vert , \end{aligned}$$
(4.5)

and

$$\begin{aligned} \bigg |\int _{\Omega }u_\varepsilon ^{-\gamma }\omega _\varepsilon dx-\int _{\Omega }u^{-\gamma }\omega _\varepsilon dx\bigg |\le & {} \displaystyle C\int _{\Omega }u^{-\gamma -1}\varphi ^2_\varepsilon |\omega _\varepsilon |dx\nonumber \\\le & {} \displaystyle C\int _{\Omega }\varphi ^2_\varepsilon |\omega _\varepsilon |dx =\displaystyle o(1)\Vert \omega _\varepsilon \Vert . \end{aligned}$$
(4.6)

Since \(u, U_\varepsilon \) solve the system:

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle M(A)\int _{\Omega }\nabla u\nabla \omega _\varepsilon dx-\int _{\Omega }u^5\omega _\varepsilon dx-\lambda \int _{\Omega }u^{-\gamma }\omega _\varepsilon dx=0, \\ \displaystyle M(A)t_0\int _{{\mathbb {R}}^3}\nabla U_\varepsilon \nabla \omega _\varepsilon dx=t_0^5\int _{{\mathbb {R}}^3}U_\varepsilon ^5\omega _\varepsilon dx, \end{array}\right. } \end{aligned}$$

where \(A=\int _{\Omega }|\nabla u|^2dx+{\mathcal {F}}_1(\int _{\Omega }|\nabla u|^2dx)\), the estimates (4.4) and (4.5) follow from (4.6). The proof is thus complete. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, C., Rădulescu, V.D. & Zhang, B. Low Perturbations and Combined Effects of Critical and Singular Nonlinearities in Kirchhoff Problems. Appl Math Optim 87, 9 (2023). https://doi.org/10.1007/s00245-022-09913-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09913-9

Keywords

Mathematics Subject Classification

Navigation