Skip to main content
Log in

A Qualitative Analysis of a Nonlinear Second-Order Anisotropic Diffusion Problem with Non-homogeneous Cauchy–Stefan–Boltzmann Boundary Conditions

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

The paper is concerned with a qualitative analysis for a nonlinear second-order parabolic problem, subject to non-homogeneous Cauchy–Stefan–Boltzmann boundary conditions, extending the types already studied. Under certain assumptions, we prove the existence, a priori estimates, regularity and uniqueness of a solution in the class \(W^{1,2}_p(Q)\). Here we extend the results already proven by the authors for a nonlinearity of cubic type, making the present mathematical model to be more capable for describing the complexity of certain wide classes of real physical phenomena (phase separation and transition, for instance).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Article  Google Scholar 

  2. Barbu, T., Miranville, A., Moroşanu, C.: A qualitative analysis and numerical simulations of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy–Neumann boundary conditions. Appl. Math. Comput. 350, 170–180 (2019). https://doi.org/10.1016/j.amc.2019.01.004

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element aproximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37, 286–318 (1999)

    Article  MathSciNet  Google Scholar 

  4. Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Euro. J. Appl. Math. 9, 417–445 (1998)

    Article  MathSciNet  Google Scholar 

  5. Cârjă, O., Miranville, A., Moroşanu, C.: On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions. Nonlinear Anal. TMA 113, 190–208 (2015). https://doi.org/10.1016/j.na.2014.10.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherfils, L., Fakih, H., Miranville, A.: A Cahn–Hilliard system with a fidelity term for color image inpainting. J. Math. Imaging Vis. 54, 117–131 (2016). https://doi.org/10.1007/s10851-015-0593-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Clarendon, Oxford (1995)

    MATH  Google Scholar 

  8. Iorga, Gh, Moroşanu, C., Tofan, I.: Numerical simulation of the thickness accretions in the secondary cooling zone of a continuous casting machine. Metal. Int. XIV(1), 72–75 (2009)

    Google Scholar 

  9. Ladyzhenskaya, O.A., Solonnikov, B.A., Uraltzava, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  10. Lions, J.L.: Control of Distributed Singular Systems. Gauthier–Villars, Paris (1985)

    Google Scholar 

  11. Miranville, A.: Existence of solutions for a one-dimensional Allen–Cahn equation. J. Appl. Anal. Comput. 3(3), 265–277 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Miranville, A.: On an anisotropic Allen–Cahn system. CUBO 17(02), 73–87 (2015)

    Article  MathSciNet  Google Scholar 

  13. Miranville, A., Moroşanu, C.: On the existence, uniqueness and regularity of solutions to the phase-field transition system with non-homogeneous Cauchy–Neumann and nonlinear dynamic boundary conditions. Appl. Math. Modell. 40(1), 192–207 (2016). https://doi.org/10.1016/j.apm.2015.04.039

    Article  MathSciNet  MATH  Google Scholar 

  14. Miranville, A., Schimperna, G.: Nonisothermal phase separation based on a microforce balance. Discrete Cont. Dyn. Syst. Ser. B 5(3), 753–768 (2005). https://doi.org/10.3934/dcdsb.2005.5.753

    Article  MathSciNet  MATH  Google Scholar 

  15. Moroşanu, C.: Analysis and Optimal Control of Phase-Field Transition System: Fractional Steps Methods. Bentham Science Publishers, Sharjah (2012). https://doi.org/10.2174/97816080535061120101

    Book  Google Scholar 

  16. Moroşanu, C.: Well-posedness for a phase-field transition system endowed with a polynomial nonlinearity and a general class of nonlinear dynamic boundary conditions. J. Fixed Point Theory Appl. 18, 225–250 (2016). https://doi.org/10.1007/s11784-015-0274-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Moroşanu, C., Motreanu, D.: The phase field system with a general nonlinearity. Int. J. Diff. Equ. Appl. 1(2), 187–204 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  19. Taylor, J.E., Cahn, J.W.: Diffuse interfaces with sharp corners and facets: phase-field models with strongly anisotropic surfaces. Phys. D 112, 381–411 (1998)

    Article  MathSciNet  Google Scholar 

  20. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer-, New York (1997)

    Book  Google Scholar 

  21. Torabi, S., Lowengrub, J., Voigt, A., Wise, S.: A new phase-field model for strongly anisotropic systems. Proc. R. Soc. A 465, 1337–1359 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costică Moroşanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranville, A., Moroşanu, C. A Qualitative Analysis of a Nonlinear Second-Order Anisotropic Diffusion Problem with Non-homogeneous Cauchy–Stefan–Boltzmann Boundary Conditions. Appl Math Optim 84, 227–244 (2021). https://doi.org/10.1007/s00245-019-09643-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09643-5

Keywords

Mathematics Subject Classification

Navigation