Skip to main content
Log in

Limit Behaviour of a Singular Perturbation Problem for the Biharmonic Operator

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We study here a singular perturbation problem of biLaplacian type, which can be seen as the biharmonic counterpart of classical combustion models. We provide different results, that include the convergence to a free boundary problem driven by a biharmonic operator, as introduced in Dipierro et al. (arXiv:1808.07696, 2018), and a monotonicity formula in the plane. For the latter result, an important tool is provided by an integral identity that is satisfied by solutions of the singular perturbation problem. We also investigate the quadratic behaviour of solutions near the zero level set, at least for small values of the perturbation parameter. Some counterexamples to the uniform regularity are also provided if one does not impose some structural assumptions on the forcing term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Caffarelli, L.A., Friedman, A.: The obstacle problem for the biharmonic operator. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6(1), 151–184 (1979)

    MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A., Friedman, A., Torelli, A.: The free boundary for a fourth order variational inequality. Ill. J. Math. 25(3), 402–422 (1981)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Friedman, A., Torelli, A.: The two-obstacle problem for the biharmonic operator. Pac. J. Math. 103(2), 325–335 (1982)

    Article  MathSciNet  Google Scholar 

  5. de Pascale, L.: The Morse–Sard theorem in Sobolev spaces. Indiana Univ. Math. J. 50(3), 1371–1386 (2001). https://doi.org/10.1512/iumj.2001.50.1878

    Article  MathSciNet  MATH  Google Scholar 

  6. Dipierro, S., Karakhanyan, A.L.: Stratification of free boundary points for a two-phase variational problem. Adv. Math. 328, 40–81 (2018)

    Article  MathSciNet  Google Scholar 

  7. Dipierro, S., Karakhanyan, A., Valdinoci, E.: A nonlinear free boundary problem with a self-driven Bernoulli condition. J. Funct. Anal. 273(11), 3549–3615 (2017)

    Article  MathSciNet  Google Scholar 

  8. Dipierro, S., Karakhanyan, A., Valdinoci, E.: A free boundary problem driven by the biharmonic operator. arXiv:1808.07696 (2018)

  9. Ganguli, R.: Finite Element Analysis of Rotating Beams. Physics Based Interpolation. Springer, Singapore (2017)

    Book  Google Scholar 

  10. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic Boundary Value Problems. Lecture Notes in Mathematics, vol. 1991. Springer, Berlin (2010)

    Book  Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin (1983)

    Book  Google Scholar 

  12. Kinnunen, J., Latvala, V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam. 18(3), 685–700 (2002). https://doi.org/10.4171/RMI/332

    Article  MathSciNet  MATH  Google Scholar 

  13. Mardanov, R.F., Zaripov, S.K.: Solution of Stokes flow problem using biharmonic equation formulation and multiquadrics method. Lobachevskii J. Math. 37(3), 268–273 (2016)

    Article  MathSciNet  Google Scholar 

  14. Mawi, H.: A free boundary problem for higher order elliptic operators. Complex Var. Elliptic Equ. 59(7), 937–946 (2014)

    Article  MathSciNet  Google Scholar 

  15. McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98(2), 167–177 (1987)

    Article  MathSciNet  Google Scholar 

  16. Novaga, M., Okabe, S.: Regularity of the obstacle problem for the parabolic biharmonic equation. Math. Ann. 363(3–4), 1147–1186 (2015)

    Article  MathSciNet  Google Scholar 

  17. Novaga, M., Okabe, S.: The two-obstacle problem for the parabolic biharmonic equation. Nonlinear Anal. 136, 215–233 (2016)

    Article  MathSciNet  Google Scholar 

  18. Petrosyan, A.: On existence and uniqueness in a free boundary problem from combustion. Commun. Partial Differ. Equ. 27(3–4), 763–789 (2002). https://doi.org/10.1081/PDE-120002873

    Article  MathSciNet  MATH  Google Scholar 

  19. Pozzolini, C., Léger, A.: A stability result concerning the obstacle problem for a plate. J. Math. Pures Appl. 90(6), 505–519 (2008). (English, with English and French summaries)

    Article  MathSciNet  Google Scholar 

  20. Sweers, G.: A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 54(2), 79–93 (2009)

    Article  MathSciNet  Google Scholar 

  21. Valdinoci, Enrico: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Weiss, G.S.: Partial regularity for weak solutions of an elliptic free boundary problem. Commun. Partial Differ. Equ. 23(3–4), 439–455 (1998). https://doi.org/10.1080/03605309808821352

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Valdinoci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Serena Dipierro and Enrico Valdinoci are member of INdAM. This work has been supported by the Australian Research Council Discovery Project DP170104880 NEW “Nonlocal Equations at Work”, the Australian Research Council DECRA DE180100957 “PDEs, free boundaries and applications” and the Fulbright Foundation.

Appendix A: Decay Estimates for the Gradient and the Hessian

Appendix A: Decay Estimates for the Gradient and the Hessian

Here, we present some decay estimates for the gradient and the Hessian of solutions to (1.1).

Proposition A.1

Suppose that \(u^\varepsilon \) is a solution of (1.1) such that \(|u^\varepsilon |\le 1\) in \(\Omega \). Let \(D\Subset \Omega \) and \(R_0\in \left( 0,{ \mathrm dist}(\overline{D}, \partial \Omega )\right) \). Suppose that

(A.1)

Then, we have

$$\begin{aligned}&\frac{1}{R^{n+2}}\int _{B_{R}(x_0)}|\nabla u^\varepsilon |^2+\frac{1}{R^n}\int _{B_{R}(x_0)}|D^2 u^\varepsilon |^2 \nonumber \\&\quad \le \frac{C}{R^{n+4}}\int _{B_{4R}(x_0)}(u^\varepsilon -m)^2+ \frac{\widehat{C}}{R^{n+2}}\int _{B_{4R}(x_0)}(u^\varepsilon -m), \end{aligned}$$
(A.2)

for any \(x_0\in D\) and any \(R\in (0,R_0/4)\), where

$$\begin{aligned} m=m^\varepsilon := \min _{B_{4R}(x_0)} u^\varepsilon , \end{aligned}$$
(A.3)

and \(C>0\) depends only on n.

Proof

The proof follows from the argument used to prove Lemma A.1 in [8]. We briefly sketch the argument here. Up to a translation, we suppose \(x_0:=0\). From the super biharmonicity of \(u^\varepsilon \) we get

$$\begin{aligned} 0\ge \int _\Omega \Delta u^\varepsilon \Delta \phi =\sum _{i,j=1}^n\int _\Omega u_{ij}^\varepsilon \phi _{ij} \end{aligned}$$

for every \(\phi \in C_0^\infty (B_{4R},[0,+\,\infty ))\), where two integration by parts are performed in the latter step. Choosing \(\phi :=(u^\varepsilon -m^\varepsilon )\eta ^2\), where \(m^\varepsilon \) is as in (A.3), and \(\eta \) is a standard cut-off function supported in \(B_{2R}\Subset \Omega \), such that \( \eta =1\) in \(B_{R}\) and \( \eta =0\) outside \(B_{2R}\) we get

$$\begin{aligned} \begin{aligned} \sum _{i,j=1}^n\int _\Omega (u_{ij}^\varepsilon )^2\eta ^2 \le \;&\frac{C}{R^2}\int _{B_{2R}}|\nabla u^\varepsilon |^2 +\frac{C}{R^4}\int _{B_{2R}}(u^\varepsilon -m)^2, \end{aligned} \end{aligned}$$
(A.4)

for some universal constant \(C>0\) (compare, e.g. with formula (A.6) in [8]).

On the other hand, using the mean value property and the lower bound in (A.1), we obtain the Caccioppoli-type inequality

$$\begin{aligned} \int _{B_{2R}}|\nabla u^\varepsilon |^2 \le \frac{C}{R^2}\,\int _{B_{4R}} (u^\varepsilon - m^\varepsilon )^2+C\,\int _{B_{4R}} (u^\varepsilon -m^\varepsilon ), \end{aligned}$$
(A.5)

see e.g. formula (7.7) in [8]. Combining (A.4) and (A.5), we finish the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipierro, S., Karakhanyan, A.L. & Valdinoci, E. Limit Behaviour of a Singular Perturbation Problem for the Biharmonic Operator. Appl Math Optim 80, 679–713 (2019). https://doi.org/10.1007/s00245-019-09598-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09598-7

Keywords

Mathematics Subject Classification

Navigation