Skip to main content
Log in

An Approximating Control Design for Optimal Mixing by Stokes Flows

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider an approximating control design for optimal mixing of a non-dissipative scalar field \(\theta \) in an unsteady Stokes flow. The objective of our approach is to achieve optimal mixing at a given final time \(T>0\), via the active control of the flow velocity v through boundary inputs. Due to zero diffusivity of the scalar field \(\theta \), establishing the well-posedness of its Gâteaux derivative requires \(\sup _{t\in [0,T]}\Vert \nabla \theta \Vert _{L^2}<\infty \), which in turn demands the flow velocity field to satisfy the condition \(\int ^{T}_{0}\Vert \nabla v\Vert _{L^{\infty }(\Omega )}\, dt<\infty \). This condition results in the need to penalize the time derivative of the boundary control in the cost functional. Consequently, the optimality system becomes difficult to solve (Hu in Appl Math Optim 78(1):201–217, 2018). Our current approximating approach provides a more transparent optimality system, with the set of admissible controls square integrable in space-time. This is achieved by first introducing a small diffusivity to the scalar equation and then establishing a rigorous analysis of convergence of the approximating control problem to the original one as the diffusivity approaches to zero. Uniqueness of the optimal solution is obtained for the two dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aamo, O.M., Krstić, M., Bewley, T.R.: Control of mixing by boundary feedback in 2D channel flow. Automatica 39, 1597–1606 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badra, M.: Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier–Stokes and Boussinesq equations with Neumann or Dirichlet control. Discret Contin Dynam Syst Ser A 32(4), 1169–1208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balogh, A., Aamo, O.M., Krstić, M.: Optimal mixing enhancement in 3-d pipe flow. IEEE Trans. Control Syst. Technol. 13, 27–41 (2005)

    Article  Google Scholar 

  4. Barbu, V., Marinoschi, G.: An optimal control approach to the optical flow problem. Syst. Control Lett. 87, 1–9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbu, V., Lasiecka, I., Triggiani, R.: Tangential Boundary Stabilization of Navier–Stokes equations, vol. 181. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  6. Beirão Da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9(9–10), 1079–1114 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models (Applied Mathematical Sciences), vol. 183, pp. 102–106. Springer, New York (2013)

    MATH  Google Scholar 

  8. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Book  Google Scholar 

  9. Chakravarthy, V.S., Ottino, J.M.: Mixing of two viscous fluids in rectangular cavity. Chem. Eng. Sci. 51(14), 3613–3622 (1996)

    Article  Google Scholar 

  10. Clopeau, T., Robert, R., Mikelic, A.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity 11(6), 1625–1636 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, P., Foias, C.: Navier–Stokes Equations, Lectures in Mathematics. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  12. Coron, J.-M.: On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calcul. Var. 1, 35–75 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Filho, M.C.L., Lopes, H.J.N., Planas, G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36(4), 1130–1141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number. J. Fluid Mech. 748, 241–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi, G.P., Simader, C.G., Sohr, H.: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in \(W^{-1/q, q}\). Math. Ann. 331(1), 41–74 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Gubanov, O., Cortelezzi, L.: Towards the design of an optimal mixer. J. Fluid Mech. 651, 27–53 (2010)

    Article  MATH  Google Scholar 

  17. Gouillart, E., Kuncio, N., Dauchot, O., Dubrulle, B., Roux, S., Thiffeault, J.L.: Walls inhibit chaotic mixing. Phys. Rev. Lett. 99(11), 114501 (2007)

    Article  Google Scholar 

  18. Gouillart, E., Dauchot, O., Dubrulle, B., Roux, S., Thiffeault, J.L.: Slow decay of concentration variance due to no-slip walls in chaotic mixing. Phys. Rev. E 78(2), 026211 (2008)

    Article  MathSciNet  Google Scholar 

  19. Gouillart, E., Thiffeault, J.-L., Dauchot, O.: Rotation shields chaotic mixing regions from no-slip walls. Phys. Rev. Lett. 104(20), 204502 (2010)

    Article  Google Scholar 

  20. Hu, W.: Boundary control for optimal mixing by Stokes flows. Appl. Math. Optim. 78(1), 201–217 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, W., Wu, J.: Boundary control for optimal mixing via Navier–Stokes flows. SIAM J. Control Optim. 56(4), 2768–2801 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, W., Kukavica, I., Ziane, M.: On the regularity for the Boussinesq equations in a bounded domain. J. Math. Phys. 54, 081507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, W., Wang, Y., Wu, J., Xiao, B., Yuan, J.: Partially dissipative 2D Boussinesq equations with Navier type boundary conditions,. Phys. D Nonlinear Phenom. 376–377, 39–48 (2018)

  24. Kelliher, J.P.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories, vol. I. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  26. Lions, J.-L.: Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  27. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations, vol. I. Springer, New York (1971)

    Book  MATH  Google Scholar 

  28. Lions, P.-L.: Mathematical Topics in Fluid Mechanics: Vol. 2: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 10. Clarendon Press (1998)

  29. Lin, Z., Thiffeault, J.-L., Doering, C.R.: Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465–476 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lunasin, E., Lin, Z., Novikov, A., Mazzucato, A., Doering, C.R.: Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows. J. Math. Phys. 53, 115611 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mathew, G., Mezić, I., Petzold, L.: A multiscale measure for mixing. Phys. D Nonlinear Phenom. 211(1), 23–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mathew, G., Mezić, I., Grivopoulos, S., Vaidya, U., Petzold, L.: Optimal control of mixing in Stokes fluid flows. J. Fluid Mech. 580, 261–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Navier, C.L.: Mémoire sur les lois du mouvement des fluids. Mémortes Acad. R. Sci. 6, 389–440 (1823)

    Google Scholar 

  34. Omari, K.E., Guer, Y.L.: Alternate rotating walls for thermal chaotic mixing. Int. J. Heat Mass Transf. 53(1), 123–134 (2010)

    Article  MATH  Google Scholar 

  35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  36. Raymond, J.-P.: Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Annales De L’institute Henri Poncaré, Analyse Non Linéaire 24, 921–951 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shankar, P.N.: Slow Viscous Flows: Qualitative Feature and Quantitative Analysis Using Complex Eigenfunction Expansions. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  38. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, vol. 66. SIAM (1995)

  39. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and Its Applications, vol. 2. North-Holland, Amsterdam (1997)

    Google Scholar 

  40. Thiffeault, J.-L., Gouillart, E., Dauchot, O.: Moving walls accelerate mixing. Phys. Rev. E 84(3), 036313 (2011)

    Article  Google Scholar 

  41. Thiffeault, J.-L.: Using multiscale norms to quantify mixing and transport. Nonlinearity 25(2), R1–R44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Umezu, K.: \(L^p\)-approach to mixed boundary value problems for second-order elliptic operators. Tokyo J. Math. 17(1), 101–123 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Irena Lasiecka for her valuable suggestions which improved the paper. The author was partially supported by the NSF Grant DMS-1813570, the DIG and FY 2018 ASR+1 Program at the Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W. An Approximating Control Design for Optimal Mixing by Stokes Flows. Appl Math Optim 82, 471–498 (2020). https://doi.org/10.1007/s00245-018-9535-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9535-4

Keywords

Mathematics Subject Classification

Navigation