Skip to main content
Log in

Multi-point Gaussian States, Quadratic–Exponential Cost Functionals, and Large Deviations Estimates for Linear Quantum Stochastic Systems

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

This paper is concerned with risk-sensitive performance analysis for linear quantum stochastic systems interacting with external bosonic fields. We consider a cost functional in the form of the exponential moment of the integral of a quadratic polynomial of the system variables over a bounded time interval. Such functionals are related to more conservative behaviour and robustness of systems with respect to statistical uncertainty, which makes the challenging problems of their computation and minimization practically important. To this end, we obtain an integro-differential equation for the time evolution of the quadratic–exponential functional, which is different from the original quantum risk-sensitive performance criterion employed previously for measurement-based quantum control and filtering problems. Using multi-point Gaussian quantum states for the past history of the system variables and their first four moments, we discuss a quartic approximation of the cost functional and its infinite-horizon asymptotic behaviour. The computation of the asymptotic growth rate of this approximation is reduced to solving two algebraic Lyapunov equations. Further approximations of the cost functional, based on higher-order cumulants and their growth rates, are applied to large deviations estimates in the form of upper bounds for tail distributions. We discuss an auxiliary classical Gaussian–Markov diffusion process in a complex Euclidean space which reproduces the quantum system variables at the level of covariances but has different fourth-order cumulants, thus showing that the risk-sensitive criteria are not reducible to quadratic–exponential moments of classical Gaussian processes. The results of the paper are illustrated by a numerical example and may find applications to coherent quantum risk-sensitive control problems, where the plant and controller form a fully quantum closed-loop system, and other settings with nonquadratic cost functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \(\rho \) is a positive semi-definite self-adjoint operator with unit trace \(\mathrm {Tr}\rho =1\) on the system-field space \({\mathfrak {H}}\) in (12) which, together with a suitable \(^*\)-algebra \({\mathfrak {A}}\) of linear operators on \({\mathfrak {H}}\), forms a quantum probability space \(({\mathfrak {H}},{\mathfrak {A}},\rho )\). Since \({\mathfrak {H}}\) no longer plays the role of a sample space and can be omitted, this yields the general quantum probability space as the pair \(({\mathfrak {A}},{\mathbf {E}})\) of a \(^*\)-algebra \({\mathfrak {A}}\) and a positive linear functional \({\mathbf {E}}\) normalised to \({\mathbf {E}}{\mathscr {I}}= 1\) [26, 48].

  2. This distribution is related by \(E_t(A):= {\mathbf {E}}{\mathsf {P}}_t(A)\) to the spectral measure \({\mathsf {P}}_t\) of \(\varphi (t)\), which is a projection-valued measure on the \(\sigma \)-algebra \({\mathfrak {B}}\) of Borel subsets of the real line satisfying \({\mathsf {P}}_t(A){\mathsf {P}}_t(B) = {\mathsf {P}}_t(A\bigcap B)\) for all \(A,B\in {\mathfrak {B}}\) and the resolution of the identity property \({\mathsf {P}}_t({\mathbb {R}}) = {\mathscr {I}}\); see, for example, [24].

  3. It is also used in Appendix B.

  4. Such estimates are physically meaningful in the case \(\varPi \succcurlyeq 0\) when the self-adjoint quantum variable \(\varphi (t)\) is a positive semi-definite operator.

  5. Which is the negative of the Legendre transform of \(\frac{1}{t} \ln \varXi _{\theta }(t)\) as a function of \(\theta \geqslant 0\).

References

  1. Adler, S.L.: Derivation of the Lindblad operator structure by use of the Ito stochastic calculus. Phys. Lett. A 26, 58–61 (2000)

    MATH  Google Scholar 

  2. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice Hall, New York (1979)

    MATH  Google Scholar 

  3. Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, London (1989)

    Google Scholar 

  4. Belavkin, V.P.: On the theory of controlling observable quantum systems. Autom. Remote Control 44(2), 178–188 (1983)

    MATH  Google Scholar 

  5. Belavkin, V.P.: Noncommutative dynamics and generalized master equations. Math. Notes 87(5), 636–653 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Schuppen, J.H.: Optimal control of partially observable stochastic systems with an exponential-of-integral performance index. SIAM J. Control Optim. 23, 599–613 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  8. Bouten, L., van Handel, R.: On the separation principle of quantum control (2006). arXiv:math-ph/0511021v2

  9. Bouten, L., Handel, R., James, M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46(6), 2199–2241 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Cross, D.J., Gilmore, R.: A Schwinger disentangling theorem. J. Math. Phys. 51, 103515-1–5 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cushen, C.D., Hudson, R.L.: A quantum-mechanical central limit theorem. J. Appl. Prob. 8(3), 454–469 (1971)

    MathSciNet  MATH  Google Scholar 

  12. D’Helon, C., Doherty, A.C., James, M.R., Wilson, S.D.: Quantum risk-sensitive control. In: Proc. 45th IEEE CDC, San Diego, CA, USA, 13–15 December, pp. 3132–3137 (2006)

  13. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    MATH  Google Scholar 

  14. Dupuis, P., James, M.R., Petersen, I.R.: Robust properties of risk-sensitive control. Math. Control Signals Syst. 13, 318–332 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Edwards, S.C., Belavkin, V.P.: Optimal quantum filtering and quantum feedback control (2005). arXiv:quant-ph/0506018v2

  16. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  17. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2004)

    MATH  Google Scholar 

  18. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic Processes. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    MathSciNet  MATH  Google Scholar 

  20. Gough, J., James, M.R.: Quantum feedback networks: Hamiltonian formulation. Commun. Math. Phys. 287, 1109–1132 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser, Boston (1982)

    MATH  Google Scholar 

  22. Holevo, A.S.: Quantum stochastic calculus. J. Sov. Math. 56(5), 2609–2624 (1991)

    MATH  Google Scholar 

  23. Holevo, A.S.: Exponential formulae in quantum stochastic calculus. Proc. R. Soc. Edinburgh 126A, 375–389 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Holevo, A.S.: Statistical Structure of Quantum Theory. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Anal. Cambridge University Press, New York (2007)

    Google Scholar 

  26. Hudson, R.L.: A short walk in quantum probability. Philos. Trans. R. Soc. A 376, 1–13 (2018)

    MathSciNet  Google Scholar 

  27. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)

    MathSciNet  MATH  Google Scholar 

  28. Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12, 134–139 (1918)

    Google Scholar 

  29. Jacobs, K., Knight, P.L.: Linear quantum trajectories: applications to continuous projection measurements. Phys. Rev. A 57(4), 2301–2310 (1998)

    Google Scholar 

  30. Jacobson, D.H.: Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games. IEEE Trans. Autom. Control 18, 124–31 (1973)

    MathSciNet  MATH  Google Scholar 

  31. James, M.R.: Risk-sensitive optimal control of quantum systems. Phys. Rev. A 69, 032108-1–14 (2004)

    Google Scholar 

  32. James, M.R.: A quantum Langevin formulation of risk-sensitive optimal control. J. Opt. B 7, S198–S207 (2005)

    MathSciNet  Google Scholar 

  33. James, M.R., Gough, J.E.: Quantum dissipative systems and feedback control design by interconnection. IEEE Trans. Autom. Control 55(8), 1806–1821 (2008)

    MathSciNet  MATH  Google Scholar 

  34. James, M.R., Nurdin, H.I., Petersen, I.R.: $H^{\infty }$ control of linear quantum stochastic systems. IEEE Trans. Autom. Control 53(8), 1787–1803 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  36. Janson, S.: Large deviations for sums of partly dependent random variables. Rand. Struct. Algorithm 24, 234–248 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  38. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976)

    MATH  Google Scholar 

  39. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley, New York (1972)

    MATH  Google Scholar 

  40. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory, 3rd edn. Pergamon Press, Oxford (1991)

    MATH  Google Scholar 

  41. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    MathSciNet  MATH  Google Scholar 

  42. Lutzky, M.: Parameter differentiation of exponential operators and the Baker-Campbell-Hausdorff formula. J. Math. Phys. 9(7), 1125–1128 (1968)

    MATH  Google Scholar 

  43. Maalouf, A.I., Petersen, I.R.: Coherent LQG control for a class of linear complex quantum systems. In: IEEE European Control Conference, Budapest, Hungary 23–26 August 2009, pp. 2271–2276

  44. Maggiore, M.: A Modern Introduction to Quantum Field Theory. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  45. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7(4), 649–673 (1954)

    MathSciNet  MATH  Google Scholar 

  46. Magnus, J.R.: The moments of products of quadratic forms in normal variables. Stat. Neerland. 32, 201–210 (1978)

    MathSciNet  MATH  Google Scholar 

  47. Merzbacher, E.: Quantum Mechanics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  48. Meyer, P.-A.: Quantum Probability for Probabilists. Springer, Berlin (1995)

    MATH  Google Scholar 

  49. Mustafa, D., Glover, K.: Minimum Entropy $H^{\infty }$-Control. Springer, Berlin (1990)

    MATH  Google Scholar 

  50. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  51. Nurdin, H.I., James, M.R., Petersen, I.R.: Coherent quantum LQG control. Automatica 45, 1837–1846 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    MATH  Google Scholar 

  53. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  54. Parthasarathy, K.R.: What is a Gaussian state? Commun. Stoch. Anal. 4(2), 143–160 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Parthasarathy, K.R.: Quantum stochastic calculus and quantum Gaussian processes. Indian J. Pure Appl. Math. 46(6), 781–807 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Parthasarathy, K.R., Schmidt, K.: Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory. Springer, Berlin (1972)

    MATH  Google Scholar 

  57. Parthasarathy, K.R., Sengupta, R.: From particle counting to Gaussian tomography. Inf. Dim. Anal. Quant. Prob. Rel. Top. 18(4), 1550023 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Petersen, I.R.: Guaranteed non-quadratic performance for quantum systems with nonlinear uncertainties. In: American Control Conference (ACC), 4–6 June (2014). arXiv:1402.2086 [quant-ph]

  59. Petersen, I.R.: Quantum linear systems theory. Open Autom. Control Syst. J. 8, 67–93 (2017)

    Google Scholar 

  60. Petersen, I.R., James, M.R., Dupuis, P.: Minimax optimal control of stochastic uncertain systems with relative entropy constraints. IEEE Trans. Autom. Control 45, 398–412 (2000)

    MathSciNet  MATH  Google Scholar 

  61. Petersen, I.R., Ugrinovskii, V.A., James, M.R.: Robust stability of uncertain linear quantum systems. Philos. Trans. R. Soc. A 370, 5354–5363 (2012)

    MathSciNet  MATH  Google Scholar 

  62. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, Reading, MA (1994)

    Google Scholar 

  63. Shaiju, A.J., Petersen, I.R.: A frequency domain condition for the physical realizability of linear quantum systems. IEEE Trans. Autom. Control 57(8), 2033–2044 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Shiryaev, A.N.: Probability, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  65. Varadhan, S.R.S.: Large deviations. Ann. Prob. 36(2), 397–419 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Vladimirov, V.S.: Methods of the Theory of Generalized Functions. Taylor & Francis, London (2002)

    MATH  Google Scholar 

  67. Vladimirov, I.G., Petersen, I.R.: Hardy-Schatten norms of systems, output energy cumulants and linear quadro-quartic Gaussian control. In: Proc. 19th Int. Symp. Math. Theor. Networks Syst., Budapest, Hungary, 5–9 July, pp. 2383–2390 (2010)

  68. Vladimirov, I.G., Petersen, I.R.: A dynamic programming approach to finite-horizon coherent quantum LQG control. In: Australian Control Conference, Melbourne, 10–11 Nov 2011, pp. 357–362 (2011). arXiv:1105.1574v1 [quant-ph]

  69. Vladimirov, I.G., Petersen, I.R.: A quasi-separation principle and Newton-like scheme for coherent quantum LQG control. Syst. Control Lett. 62(7), 550–559 (2013)

    MathSciNet  MATH  Google Scholar 

  70. Vladimirov, I.G., Petersen, I.R.: Coherent quantum filtering for physically realizable linear quantum plants. In: Proc. European Control Conference, IEEE, Zurich, Switzerland, pp. 2717–2723, 17–19 July 2013

  71. Vladimirov, I.G., Petersen, I.R., James, M.R.: Risk-sensitive performance criteria and robustness of quantum systems with a relative entropy description of state uncertainty. In: 23rd International Symposium on Mathematical Theory of Networks and Systems (MTNS 2018), Hong Kong University of Science and Technology, 16–20 July 2018 (2018). arXiv:1802.00250 [quant-ph]

  72. Walls, D.F., Milburn, G.J.: Quantum Optics, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  73. Whittle, P.: Risk-sensitive linear/quadratic/Gaussian control. Adv. Appl. Probab. 13, 764–77 (1981)

    MathSciNet  MATH  Google Scholar 

  74. Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8(4), 962–982 (1967)

    MathSciNet  MATH  Google Scholar 

  75. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  76. Yamamoto, N., Bouten, L.: Quantum risk-sensitive estimation and robustness. IEEE Trans. Autom. Control 54(1), 92–107 (2009)

    MathSciNet  MATH  Google Scholar 

  77. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    MATH  Google Scholar 

  78. Zhang, G., James, M.R.: Quantum feedback networks and control: a brief survey. Chin. Sci. Bull. 57(18), 2200–2214 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor G. Vladimirov.

Additional information

This work is supported by the Air Force Office of Scientific Research (AFOSR) and Office of Naval Research Global (ONRG) under Agreement Number FA2386-16-1-4065 and the Australian Research Council (ARC) under Grant DP180101805.

Appendices

Appendix A: Commutator of Quadratic Polynomials of Quantum Variables Satisfying CCRs

Since the commutator \(\mathrm {ad}_{\xi }\), associated with a given operator \(\xi \), is a derivation, then repeated application of this property leads to

$$\begin{aligned} {[}ab,c d]&= [ab,c]d+ c[ab,d] \nonumber \\&= ([a,c]b + a[b,c])d + c([a,d]b + a[b,d])\nonumber \\&= [a,c]b d + a[b ,c]d +c[a,d]b + ca[b ,d] \end{aligned}$$
(A1)

for any operators a, b, c, d. Hence, if these operators satisfy CCRs (that is, their pairwise commutators are identity operators up to scalar factors), then the right-hand side of (A1) is a quadratic polynomial of a, b, c, d. Therefore, quadratic polynomials of such operators form a Lie algebra with respect to the commutator. For the purposes of Sect. 4, we will provide a version of (A1) for quadratic polynomials of operators satisfying the CCRs.

Lemma 4

Suppose \(a:=(a_j)\), \(b:=(b_k)\), \(c:=(c_{\ell })\), \(d:=(d_r)\) are vectors of self-adjoint operators which satisfy the CCRs

$$\begin{aligned} \left[ \begin{bmatrix} a\\ b \end{bmatrix}, \begin{bmatrix} c^{\mathrm{T}}&d^{\mathrm{T}} \end{bmatrix} \right] := \begin{bmatrix} [a,c^{\mathrm{T}}]&\quad [a,d^{\mathrm{T}}]\\ [b,c^{\mathrm{T}}]&\quad [b,d^{\mathrm{T}}] \end{bmatrix} = 2i \begin{bmatrix} \varTheta _{11}&\quad \varTheta _{12} \\ \varTheta _{21}&\quad \varTheta _{22} \end{bmatrix}, \end{aligned}$$
(A2)

where \(\varTheta _{jk}\) are real matrices. Also, let \(F:= (f_{jk})\) and \(G:=(g_{\ell r})\) be appropriately dimensioned complex matrices which specify the bilinear forms

$$\begin{aligned} a^{\mathrm{T}}F b =\sum _{j,k}f_{jk}a_jb_k, \qquad c^{\mathrm{T}} G d = \sum _{\ell ,r}g_{\ell r}c_{\ell }d_r. \end{aligned}$$
(A3)

Then their commutator is also a quadratic polynomial of the operators which is computed as

$$\begin{aligned}{}[a^{\mathrm{T}}F b, c^{\mathrm{T}}G d] = 2i \begin{bmatrix} a^{\mathrm{T}}&\quad b^{\mathrm{T}}&\quad c^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} 0&\quad 0&\quad F \varTheta _{21} G \\ 0&\quad 0&\quad F^{\mathrm{T}} \varTheta _{11} G \\ G \varTheta _{22}^{\mathrm{T}} F^{\mathrm{T}}&\quad G \varTheta _{12}^{\mathrm{T}} F&\quad 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ d \end{bmatrix}.\qquad \end{aligned}$$
(A4)

In the case \(a=b\) (when the vectors a and b are identical), (A4) takes the form

$$\begin{aligned}{}[a^{\mathrm{T}}F a,c^{\mathrm{T}}G d] = 4i \begin{bmatrix} a^{\mathrm{T}}&c^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} 0&\quad {\mathbf {S}}(F)\varTheta _{11} G\\ G \varTheta _{12}^{\mathrm{T}} {\mathbf {S}}(F)&\quad 0 \end{bmatrix} \begin{bmatrix} a \\ d \end{bmatrix}, \end{aligned}$$
(A5)

where \({\mathbf {S}}(F):= \frac{1}{2}(F+F^{\mathrm{T}})\) denotes the symmetrizer of square matrices. \(\square \)

Proof

By recalling the bilinearity of the commutator, applying (A1) to the operators \(a_j\), \(b_k\), \(c_{\ell }\), \(d_r\) in (A3) and using the CCRs (A2), it follows that

$$\begin{aligned} {[}a^{\mathrm{T}}F b,c^{\mathrm{T}}G d]&= \sum _{j,k,\ell ,r} f_{jk}g_{\ell r} [a_jb_k, c_{\ell }d_r] \nonumber \\&= \sum _{j,k,\ell ,r} f_{jk}g_{\ell r} \big ( [a_j,c_{\ell }]b_k d_r + a_j[b_k ,c_{\ell }]d_r+c_{\ell }[a_j,d_r]b_k + c_{\ell }a_j[b_k ,d_r] \big ) \nonumber \\&= 2i \big ( b^{\mathrm{T}} F^{\mathrm{T}} \varTheta _{11} Gd + a^{\mathrm{T}} F \varTheta _{21} Gd + c^{\mathrm{T}}G \varTheta _{12}^{\mathrm{T}} Fb + c^{\mathrm{T}}G \varTheta _{22}^{\mathrm{T}} F^{\mathrm{T}}a \big ). \end{aligned}$$
(A6)

The right-hand side of (A6) is a quadratic function of the operators whose vector-matrix form is given by (A4). If \(a=b\), then F in (A3) is a square matrix, and the matrices in (A2) satisfy \(\varTheta _{1k}=\varTheta _{2k}\) for every \(k=1,2\). In this case, (A6) reduces to

$$\begin{aligned}{}[a^{\mathrm{T}}F a,c^{\mathrm{T}}G d]&= 2i \big ( a^{\mathrm{T}} (F^{\mathrm{T}} \varTheta _{11}+F \varTheta _{21}) Gd+ c^{\mathrm{T}}G (\varTheta _{12}^{\mathrm{T}} F+\varTheta _{22}^{\mathrm{T}} F^{\mathrm{T}})a \big )\\&= 2i \big ( a^{\mathrm{T}} (F^{\mathrm{T}} +F )\varTheta _{11} Gd + c^{\mathrm{T}}G \varTheta _{12}^{\mathrm{T}}( F+F^{\mathrm{T}})a \big ) \\&= 4i \big ( a^{\mathrm{T}} {\mathbf {S}}(F)\varTheta _{11} Gd + c^{\mathrm{T}}G \varTheta _{12}^{\mathrm{T}}{\mathbf {S}}(F)a \big ), \end{aligned}$$

which establishes (A5). \(\square \)

Similar commutation relations hold for bilinear forms of annihilation and creation operators (see, for example, [29, Appendix B] and [61, Lemma 4.2]) and are used in the context of Schwinger’s theorems on exponentials of such forms [10].

Appendix B: Covariance of Quadratic Functions of Gaussian Quantum Variables

For the purposes of Sect. 5, we will need the following lemma on the covariance of bilinear forms of Gaussian quantum variables.

Lemma 5

Suppose the self-adjoint quantum variables, constituting the vectors a, b, c, d in Lemma 4, are in a zero-mean Gaussian state. Then the covariance of the bilinear forms in (A3), specified by complex matrices F and G, can be computed as

$$\begin{aligned} \mathbf {cov}( a^{\mathrm{T}}F b, c^{\mathrm{T}}G d ) = \left\langle \overline{F\mathbf {cov}(b,d)}, \mathbf {cov}(a,c)G \right\rangle + \left\langle \overline{F\mathbf {cov}(b,c)}, \mathbf {cov}(a,d)G^{\mathrm{T}} \right\rangle .\nonumber \\ \end{aligned}$$
(B1)

In the case when \(a=b\) and \(c=d\), the relation (B1) reduces to

$$\begin{aligned} \mathbf {cov}( a^{\mathrm{T}}F a, c^{\mathrm{T}}G c ) = 2 \left\langle \overline{{\mathbf {S}}(F)}, \mathbf {cov}(a,c) {\mathbf {S}}(G) \mathbf {cov}(a,c)^{\mathrm{T}} \right\rangle , \end{aligned}$$
(B2)

where \({\mathbf {S}}\) is the symmetrizer. \(\square \)

Proof

The mean value of the first bilinear form in (A3) is computed as

$$\begin{aligned} {\mathbf {E}}(a^{\mathrm{T}}F b) = \sum _{j,k} f_{jk} {\mathbf {E}}(a_jb_k) = \mathrm {Tr}( F^{\mathrm{T}} {\mathbf {E}}(ab^{\mathrm{T}}) ) = \left\langle {\overline{F}}, \mathbf {cov}(a,b) \right\rangle , \end{aligned}$$
(B3)

where \({\mathbf {E}}(ab^{\mathrm{T}}) = \mathbf {cov}(a,b)\) since the underlying quantum variables are assumed to have zero mean values. By a similar reasoning, the second bilinear form in (A3) has the mean value

$$\begin{aligned} {\mathbf {E}}(c^{\mathrm{T}}G d) = \left\langle {\overline{G}}, \mathbf {cov}(c,d) \right\rangle . \end{aligned}$$
(B4)

Application of the Wick–Isserlis theorem [35, Theorem 1.28 on pp. 11–12] (see also [28] and [44, p. 122]) to the fourth-order mixed moment of the zero-mean Gaussian quantum variables \(a_j\), \(b_k\), \(c_{\ell }\), \(d_r\) leads to

$$\begin{aligned} {\mathbf {E}}( a^{\mathrm{T}}F b c^{\mathrm{T}}G d )&= \sum _{j,k,\ell ,r} f_{jk}g_{\ell r} {\mathbf {E}}(a_j b_k c_{\ell } d_r) \nonumber \\&= \sum _{j,k,\ell ,r} f_{jk}g_{\ell r} \big ( \mathbf {cov}(a_j,b_k) \mathbf {cov}(c_{\ell },d_r) + \mathbf {cov}(a_j,c_{\ell }) \mathbf {cov}(b_k,d_r) \nonumber \\&\quad + \mathbf {cov}(a_j,d_r) \mathbf {cov}(b_k,c_{\ell }) \big ) \nonumber \\&= \mathrm {Tr}(F^{\mathrm{T}}\mathbf {cov}(a,b)) \mathrm {Tr}(G^{\mathrm{T}}\mathbf {cov}(c,d)) + \mathrm {Tr}((F\mathbf {cov}(b,d))^{\mathrm{T}} \mathbf {cov}(a,c)G) \nonumber \\&\quad + \mathrm {Tr}((F\mathbf {cov}(b,c))^{\mathrm{T}} \mathbf {cov}(a,d)G^{\mathrm{T}}) \nonumber \\&= \left\langle {\overline{F}}, \mathbf {cov}(a,b) \right\rangle \left\langle {\overline{G}}, \mathbf {cov}(c,d) \right\rangle + \left\langle \overline{F\mathbf {cov}(b,d)}, \mathbf {cov}(a,c)G \right\rangle \nonumber \\&\quad + \left\langle \overline{F\mathbf {cov}(b,c)}, \mathbf {cov}(a,d)G^{\mathrm{T}} \right\rangle . \end{aligned}$$
(B5)

The covariance of the bilinear forms (A3) can now be computed by combining (B3)–(B5) as

$$\begin{aligned} \mathbf {cov}( a^{\mathrm{T}}F b, c^{\mathrm{T}}G d )&= {\mathbf {E}}( a^{\mathrm{T}}F b c^{\mathrm{T}}G d ) - {\mathbf {E}}( a^{\mathrm{T}}F b ) {\mathbf {E}}( c^{\mathrm{T}}G d )\\&= \left\langle \overline{F\mathbf {cov}(b,d)}, \mathbf {cov}(a,c)G \right\rangle + \left\langle \overline{F\mathbf {cov}(b,c)}, \mathbf {cov}(a,d)G^{\mathrm{T}} \right\rangle , \end{aligned}$$

which establishes (B1). Application of (B1) to the particular case \(a=b\) and \(c=d\) leads to

$$\begin{aligned} \mathbf {cov}( a^{\mathrm{T}}F a, c^{\mathrm{T}}G c )&= \left\langle \overline{F\mathbf {cov}(a,c)}, \mathbf {cov}(a,c)G \right\rangle + \left\langle \overline{F\mathbf {cov}(a,c)}, \mathbf {cov}(a,c)G^{\mathrm{T}} \right\rangle \nonumber \\&= 2 \left\langle \overline{F\mathbf {cov}(a,c)}, \mathbf {cov}(a,c){\mathbf {S}}(G) \right\rangle \nonumber \\&= 2 \left\langle {\overline{F}}, \mathbf {cov}(a,c) {\mathbf {S}}(G) \mathbf {cov}(a,c)^{\mathrm{T}} \right\rangle \nonumber \\&= 2 \left\langle \overline{{\mathbf {S}}(F)}, \mathbf {cov}(a,c) {\mathbf {S}}(G) \mathbf {cov}(a,c)^{\mathrm{T}} \right\rangle , \end{aligned}$$
(B6)

thus proving (B2). In (B6) use has also been made of the symmetry of the matrix \( \mathbf {cov}(a,c) {\mathbf {S}}(G) \mathbf {cov}(a,c)^{\mathrm{T}} \), the orthogonality of the subspaces of symmetric and antisymmetric matrices, and the fact that the symmetrizer commutes with the complex conjugation: \({\mathbf {S}}({\overline{F}} ) = \overline{{\mathbf {S}}(F)}\). \(\square \)

Appendix C: An Averaging Lemma with Multifactor Convolutions

For the purposes of the cumulant growth rate results of Theorem 4 in Sect. 6, we provide an averaging lemma which involves multifactor convolutions (145).

Lemma 6

Suppose \(f_1, \ldots , f_r\) are appropriately dimensioned complex matrix-valued functions on the real line which are bounded and absolutely integrable, with \(r\geqslant 2\). Then

$$\begin{aligned} \lim _{t\rightarrow +\infty } \Big ( \frac{1}{t} \int _{[0,t]^r} \mathop {\overrightarrow{\prod }}_{k=1}^r f_k(t_k-t_{k+1}) \mathrm {d}t_1 \times \cdots \times \mathrm {d}t_r \Big )&= (f_1* \cdots *f_r) (0) \nonumber \\&= \frac{1}{2\pi } \int _{-\infty }^{+\infty } \mathop {\overrightarrow{\prod }}_{k=1}^r F_k(\lambda ) \mathrm {d}\lambda , \end{aligned}$$
(C1)

where \(t_{r+1} := t_1\), and \(F_k(\lambda ):= \int _{-\infty }^{+\infty } f_k(t)\mathrm {e}^{-i\lambda t} \mathrm {d}t\) denotes the Fourier transform of \(f_k\). \(\square \)

Proof

Since the integrand on the left-hand side of (C1) depends on the integration variables \(t_1, \ldots , t_r\) only through their differences, they can be translated so as to represent the integral in the form

$$\begin{aligned} \int _{[0,t]^r} \mathop {\overrightarrow{\prod }}_{k=1}^r f_k(t_k-t_{k+1}) \mathrm {d}t_1 \times \cdots \times \mathrm {d}t_r = \int _0^t g_t(t_1) \mathrm {d}t_1, \end{aligned}$$
(C2)

where

$$\begin{aligned} g_t(t_1)&:= \int _{[0,t]^{r-1}} \mathop {\overrightarrow{\prod }}_{k=1}^r f_k(t_k-t_{k+1}) \mathrm {d}t_2 \times \cdots \times \mathrm {d}t_r \nonumber \\&= \int _{[-t_1, t-t_1]^{r-1}} \mathop {\overrightarrow{\prod }}_{k=1}^r f_k(\tau _k-\tau _{k+1}) \mathrm {d}\tau _2 \times \cdots \times \mathrm {d}\tau _r. \end{aligned}$$
(C3)

Here, use is made of the new integration variables \( \tau _k := t_k-t_1 \) for all \( k=2, \ldots , r \) together with the corresponding convention \(\tau _1 = \tau _{r+1}=0\). The right-hand side of (C3) is organized as the convolution \((f_1* \cdots *f_r)(0)\) (evaluated at 0) except that the integration is restricted to the cube \([-t_1, t-t_1]^{r-1}\). Now, the fulfillment of the inclusions \(t_1 \in [0, t]\) and \((\tau _2, \ldots , \tau _r) \in [-t_1, t-t_1]^{r-1}\) is equivalent to \(t_1\) belonging to the (possibly empty) interval

$$\begin{aligned} - \min (0, \tau _2, \ldots , \tau _r) \leqslant t_1 \leqslant t - \max (0, \tau _2, \ldots , \tau _r) \end{aligned}$$
(C4)

of length

$$\begin{aligned} \max \big ( 0,\, t - \max (0, \tau _2, \ldots , \tau _r) + \min (0, \tau _2, \ldots , \tau _r) \big ) = t h_t(\tau _2, \ldots , \tau _r). \end{aligned}$$
(C5)

Here,

$$\begin{aligned} h_t(\tau _2, \ldots , \tau _r) := \chi _t \big ( \max (0, \tau _2, \ldots , \tau _r) - \min (0, \tau _2, \ldots , \tau _r) \big ) \end{aligned}$$
(C6)

inherits from the function \(\chi _t\) in (105) the properties of being bounded by and convergent to 1 as \(t\rightarrow +\infty \) for any given \(\tau _2, \ldots , \tau _r \in {\mathbb {R}}\). By combining (C2)–(C6), it follows that

$$\begin{aligned}&\frac{1}{t} \int _{[0,t]^r} \mathop {\overrightarrow{\prod }}_{k=1}^r f_k(t_k-t_{k+1}) \mathrm {d}t_1 \times \cdots \times \mathrm {d}t_r \nonumber \\&\quad = \int _{{\mathbb {R}}^{r-1}} h_t(\tau _2, \ldots , \tau _r) \mathop {\overrightarrow{\prod }}_{k=1}^r f_k(\tau _k-\tau _{k+1}) \mathrm {d}\tau _2 \times \cdots \times \mathrm {d}\tau _r \nonumber \\&\quad \rightarrow \int _{{\mathbb {R}}^{r-1}} \mathop {\overrightarrow{\prod }}_{k=1}^r f_k(\tau _k-\tau _{k+1}) \mathrm {d}\tau _2 \times \cdots \times \mathrm {d}\tau _r, \qquad \mathrm{as}\ t\rightarrow +\infty , \end{aligned}$$
(C7)

where Lebesgue’s dominated convergence theorem is applicable since the functions \(f_1, \ldots , f_r\) are bounded and absolutely integrable (and hence, so are their convolutions). The limit in (C7) is \((f_1* \cdots *f_r)(0)\), which establishes the first of the equalities (C1), with the second of them following from the convolution theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, I.G., Petersen, I.R. & James, M.R. Multi-point Gaussian States, Quadratic–Exponential Cost Functionals, and Large Deviations Estimates for Linear Quantum Stochastic Systems. Appl Math Optim 83, 83–137 (2021). https://doi.org/10.1007/s00245-018-9512-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9512-y

Keywords

Mathematics Subject Classification

Navigation