Skip to main content
Log in

A phase-space formulation and Gaussian approximation of the filtering equations for nonlinear quantum stochastic systems

  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper is concerned with a filtering problem for a class of nonlinear quantum stochastic systems with multichannel nondemolition measurements. The system-observation dynamics are governed by a Markovian Hudson-Parthasarathy quantum stochastic differential equation driven by quantum Wiener processes of bosonic fields in vacuum state. The Hamiltonian and system-field coupling operators, as functions of the system variables, are assumed to be represented in a Weyl quantization form. Using the Wigner-Moyal phase-space framework, we obtain a stochastic integro-differential equation for the posterior quasi-characteristic function (QCF) of the system conditioned on the measurements. This equation is a spatial Fourier domain representation of the Belavkin-Kushner-Stratonovich stochastic master equation driven by the innovation process associated with the measurements. We discuss a specific form of the posterior QCF dynamics in the case of linear system-field coupling and outline a Gaussian approximation of the posterior quantum state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kolmogorov. Interpolation and extrapolation of stationary random sequences. Selected Works of A. N. Kolmogorov. Dordrecht: Springer, 1992: 272–280.

    Google Scholar 

  2. N. Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. New York: Wiley, 1949.

    MATH  Google Scholar 

  3. R. S. Liptser, A. N. Shiryaev. Statistics of Random Processes: Applications. Berlin: Springer, 2001.

    Book  MATH  Google Scholar 

  4. H. Kwakernaak, R. Sivan. Linear Optimal Control Systems. New York: Wiley, 1972.

    MATH  Google Scholar 

  5. B. D. O. Anderson, J. B. Moore. Optimal Filtering, Englewood Cliffs: Prentice Hall, 1979.

    MATH  Google Scholar 

  6. K. M. Nagpal, P. P. Khargonekar. Filtering and smoothing in an H setting. IEEE Transactions on Automatic Control, 1991, 36(2): 152–166.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. R. Petersen, A. V. Savkin. Robust Kalman Filtering for Signals and Systems with Large Uncertainties. Boston: Birkhäuser, 1999.

    Book  MATH  Google Scholar 

  8. I. R. Petersen, V. A. Ugrinovskii, A. V. Savkin. Robust Control Design Using H Methods. London: Springer, 2000.

    Book  MATH  Google Scholar 

  9. I. G. Vladimirov. Anisotropy-based optimal filtering in linear discrete time invariant systems. arXiv, 2014: arXiv:1412.3010[cs.SY].

    Google Scholar 

  10. A. S. Holevo. Statistical Structure of Quantum Theory. Berlin: Springer, 2001.

    Book  MATH  Google Scholar 

  11. E. Merzbacher. Quantum Mechanics. 3rd ed. New York: Wiley, 1998.

    MATH  Google Scholar 

  12. J. J. Sakurai. Modern QuantumMechanics. Reading,MA: Addison-Wesley, 1994.

    Google Scholar 

  13. S. Lloyd. Coherent quantum feedback. Physical Review A, 2000, 62(2): DOI 10.1103/PhysRevA.62.022108.

  14. H. M. Wiseman, G. J. Milburn. All-optical versus electro-optical quantum limited feedback. Physical Review A, 1994, 49(5): 4110–4125.

    Article  Google Scholar 

  15. I. R. Petersen. Quantum linear systems theory. Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest, Hungary, 2010: 2173–2184.

    Google Scholar 

  16. M. R. James, H. I. Nurdin, I. R. Petersen. H control of linear quantum stochastic systems. IEEE Transactions on Automatic Control, 2008, 53(8): 1787–1803.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. I. Nurdin, M. R. James, I. R. Petersen. Coherent quantum LQG control. Automatica, 2009, 45: 1837–1846.

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Miao, M. R. James. Quantum observer for linear quantum stochastic systems. Proceedings of the 51st IEEE Conference on Decision and Control, Hawaii: IEEE, 2012: 1680–1684.

    Google Scholar 

  19. A. I. Maalouf, I. R. Petersen. Coherent LQG control for a class of linear complex quantum systems. IEEE European Control Conference, Budapest, Hungary: IEEE, 2009: 2271–2276.

    Google Scholar 

  20. I. R. Petersen. A direct coupling coherent quantum observer. IEEE Multi-Conference on Systems and Control, Nice/Antibes, France: IEEE, 2014: 1960–1963.

    Google Scholar 

  21. I. R. Petersen, E. H. Huntington. A possible implementation of a direct coupling coherent quantum observer. Proceedings of the 5th Australian Control Conference (AUCC), Gold Coast, Australia: IEEE, 2015: 105–107.

    Google Scholar 

  22. I. G. Vladimirov, I. R. Petersen. Directly coupled observers for quantum harmonic oscillators with discounted mean square cost functionals and penalized back-action. IEEE Conference on Norbert Wiener in the 21st Century, University of Melbourne, Australia: IEEE, 2016: 78–83.

    Google Scholar 

  23. G. Zhang, M. R. James. Direct and indirect couplings in coherent feedback control of linear quantum systems. IEEE Transactions on Automatic Control, 2011, 56(7): 1535–1550.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. P. Belavkin. A stochastic calculus of quantum input-output processes and quantum nondemolition filtering. Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, 1990, 36: 29–67.

    MATH  Google Scholar 

  25. I. Karatzas, S. E. Shreve. BrownianMotion and Stochastic Calculus. 2nd ed. New York: Springer, 1991.

    MATH  Google Scholar 

  26. D. Dong, I. R. Petersen. Quantum control theory and applications: a survey. IET Control Theory and Applications, 2010, 4(12): 2651–2671.

    Article  MathSciNet  Google Scholar 

  27. C. W. Gardiner, P. Zoller. Quantum Noise. Berlin: Springer, 2004.

    MATH  Google Scholar 

  28. H. M. Wiseman, G. J. Milburn. Quantum Measurement and Control, Cambridge: Cambridge University Press, 2010.

    MATH  Google Scholar 

  29. V. P. Belavkin. Theory of the control of observable quantum systems. Automation and Remote Control, 1983, 44(2): 178–188.

    MathSciNet  MATH  Google Scholar 

  30. C. D’Helon, A. C. Doherty, M. R. James, et al. Quantum risksensitive control, Proceedings of the 45th Conference on Decision and Control, San Diego: IEEE, 2006: 3132–3137.

    Chapter  Google Scholar 

  31. S. C. Edwards, V. P. Belavkin. Optimal quantum filtering and quantum feedback control. arXiv,2005: arXiv:quant-ph/0506018v2.

    MATH  Google Scholar 

  32. J. Gough, V. P. Belavkin, O. G. Smolyanov. Hamilton-Jacobi-Bellman equations for quantum optimal feedback control. Journal of Optics B: Quantumand Semiclassical Optics, 2005, 7(10): 237–244.

    Article  MathSciNet  Google Scholar 

  33. M. R. James. A quantum Langevin formulation of risk-sensitive optimal control. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): 198–207.

    Article  MathSciNet  Google Scholar 

  34. N. Yamamoto, L. Bouten. Quantum risk-sensitive estimation and robustness, IEEE Transactions on Automatic Control, 2009, 54(1): 92–107.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Bouten, R. Van Handel, M. R. James. An introduction to quantum filtering. SIAM Journal on Control and Optimization, 2007, 46(6): 2199–2241.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. F. Emzir, M. J. Woolley, I. R. Petersen. Quantum filtering for multiple diffusive and Poissonian measurements. Journal of Physics A: Mathematical and Theoretical, 2015, 48(38): DOI 10.1088/1751-8113/48/38/385302.

  37. J. E. Gough, C. Köstler. Quantum filtering in coherent states. Communications on Stochastic Analysis, 2010, 4(4): 505–521.

    MathSciNet  MATH  Google Scholar 

  38. H. I. Nurdin. Quantum filtering formultiple input multiple output systems driven by arbitrary zero-mean jointly Gaussian input fields. Russian Journal of Mathematical Physics, 2014, 21(3): 386–398.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. L. Hudson, K. R. Parthasarathy. Quantum Itô’ s formula and stochastic evolutions. Communications in Mathematical Physics, 1984, 93: 301–323.

    Article  MathSciNet  MATH  Google Scholar 

  40. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus. Basel: Springer, 1992.

    Book  MATH  Google Scholar 

  41. K. R. Parthasarathy, K. Schmidt. Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory. Berlin: Springer, 1972.

    Book  MATH  Google Scholar 

  42. G. B. Folland. Harmonic Analysis in Phase Space. Princeton: Princeton University Press, 1989.

    MATH  Google Scholar 

  43. B. J. Hiley. On the relationship between the Wigner-Moyal and Bohm approaches to quantum mechanics: a step to a more general theory? Foundations of Physics, 2010, 40(4): 356–367.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. E. Moyal. Quantum mechanics as a statistical theory. Proceedings of Cambridge Philosophical Society, 1949, 45: 99–124.

    Article  MathSciNet  MATH  Google Scholar 

  45. C. D. Cushen, R. L. Hudson. A quantum-mechanical central limit theorem. Journal of Applied Probability, 1971, 8(3): 454–469.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Gough, T. S. Ratiu, O. G. Smolyanov. Feynman, Wigner, and Hamiltonian structures describing the dynamics of open quantum systems. Doklady Mathematics, 2014, 89(1): 68–71.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Gough, T. S. Ratiu, O. G. Smolyanov. Wigner measures and quantum control. Doklady Mathematics, 2015, 91(2): 199–203.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Kupsch, O. G. Smolyanov. Exact master equations describing reduced dynamics of the Wigner function. Journal of Mathematical Sciences, 2008, 150(6): 2598–2608.

    Article  MathSciNet  MATH  Google Scholar 

  49. K.-P. Marzlin, S. Deering. The Moyal equation for open quantum systems. Journal of Physics A: Mathematical and Theoretical, 2015, 48(20): DOI 10.1088/1751-8113/48/20/205301.

  50. I. G. Vladimirov. Evolution of quasi-characteristic functions in quantum stochastic systems with Weyl quantization of energy operators. arXiv, 2015: arXiv:1512.08751[math-ph].

    Google Scholar 

  51. A. Kh. Sichani, I. G. Vladimirov, I. R. Petersen. Robust mean square stability of open quantum stochastic systems with Hamiltonian perturbations in a Weyl quantization form. Australian Control Conference, Canberra, Australia: IEEE, 2014: 83–88.

    Google Scholar 

  52. I. G. Vladimirov. A transverse Hamiltonian variational technique for open quantum stochastic systems and its application to coherent quantum control. IEEE Multi-Conference on Systems and Control, Sydney: IEEE, 2015: 29–34.

    Google Scholar 

  53. I. G. Vladimirov. Weyl variations and local sufficiency of linear observers in the mean square optimal coherent quantum filtering problem. Australian Control Conference, Gold Coast, Australia: IEEE, 2015: 93–98.

    Google Scholar 

  54. I. G. Vladimirov, I. R. Petersen. A quasi-separation principle and Newton-like scheme for coherent quantum LQG control. Systems & Control Letters, 2013, 62(7): 550–559.

    Article  MathSciNet  MATH  Google Scholar 

  55. I. G. Vladimirov, I. R. Petersen. Coherent quantum filtering for physically realizable linear quantum plants. European Control Conference, Zurich, Switzerland: IEEE, 2013: 2717–2723.

    Google Scholar 

  56. A. S. Holevo. Quantum stochastic calculus. Journal of Soviet Mathematics, 1991, 56(5): 2609–2624.

    Article  MATH  Google Scholar 

  57. V. Gorini, A. Kossakowski, E. C. G. Sudarshan. Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics, 1976, 17(5): 821–825.

    Article  MathSciNet  Google Scholar 

  58. G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 1976, 48(2): 119–130.

    Article  MathSciNet  MATH  Google Scholar 

  59. D. W. Stroock. Partial Differential Equations for Probabilists. Cambridge: Cambridge University Press, 2008.

    Book  MATH  Google Scholar 

  60. A. J. Shaiju, I. R. Petersen. A frequency domain condition for the physical realizability of linear quantum systems. IEEE Transactions on Automatic Control, 2012, 57(8): 2033–2044.

    Article  MathSciNet  MATH  Google Scholar 

  61. A. I. Maalouf, I. R. Petersen. On the physical realizability of a class of nonlinear quantum systems. Proceedings of the 51st IEEE Conference on Decision and Control, Hawaii: IEEE, 2012: 1088–1092.

    Google Scholar 

  62. J. Gough, M. R. James. Quantum feedback networks:Hamiltonian formulation. Communications in Mathematical Physics, 2009, 287(3): 1109–1132.

    Article  MathSciNet  MATH  Google Scholar 

  63. M. R. James, J. E. Gough. Quantum dissipative systems and feedback control design by interconnection. IEEE Transactions on Automatic Control, 2010, 55(8): 1806–1821.

    Article  MathSciNet  MATH  Google Scholar 

  64. I. R. Petersen, V. Ugrinovskii, M. R. James. Robust stability of uncertain linear quantum systems. Philosophical Transactions of the Royal Society A, 2012, 370(1979): 5354–5363.

    Article  MathSciNet  MATH  Google Scholar 

  65. I. I. Gikhman, A. V. Skorokhod. The Theory of Stochastic Processes. Berlin: Springer, 2004.

    Book  MATH  Google Scholar 

  66. R. L. Hudson. Quantum Bochner theorems and incompatible observables. Kybernetika, 2010, 46(6): 1061–1068.

    MathSciNet  MATH  Google Scholar 

  67. R. L. Hudson. When is the Wigner quasi-probability density nonnegative? Reports on Mathematical Physics, 1974, 6(2): 249–252.

    Article  MathSciNet  MATH  Google Scholar 

  68. K. Yosida. Functional Analysis. 6th ed. Berlin: Springer, 1980.

    MATH  Google Scholar 

  69. V. S. Vladimirov. Methods of the Theory of Generalized Functions. London: Taylor & Francis, 2002.

    MATH  Google Scholar 

  70. G. J. Lord, C. E. Powell, T. Shardlow. An Introduction to Computational Stochastic PDEs. Cambridge: Cambridge University Press, 2014.

    Book  MATH  Google Scholar 

  71. A. Jentzen, P. E. Kloeden. Taylor Approximations for Stochastic Partial Differential Equations. Philadelphia: SIAM, 2011.

    Book  MATH  Google Scholar 

  72. P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations. Berlin: Springer, 1992.

    Book  MATH  Google Scholar 

  73. K. R. Parthasarathy. What is a Gaussian state? Communications on Stochastic Analysis, 2010, 4(2): 143–160.

    MathSciNet  MATH  Google Scholar 

  74. A. Renyi. On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press, 1961: 547–561.

    Google Scholar 

  75. I. G. Vladimirov, I. R. Petersen. Gaussian stochastic linearization for open quantum systems using quadratic approximation of Hamiltonians. arXiv, 2012: arXiv:1202.0946v1 [quant-ph].

    Google Scholar 

  76. R. VanHandel, H. Mabuchi. Quantum projection filter for a highly nonlinearmodel in cavity QED. Journal ofOptics B: Quantumand Semiclassical Optics, 2005, 7(10): 226–236.

    Google Scholar 

  77. L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika, 1918, 12: 134–139.

    Article  Google Scholar 

  78. S. Janson. Gaussian Hilbert Spaces. Cambridge: Cambridge University Press, 1997.

    Book  MATH  Google Scholar 

  79. P. A. Frantsuzov, V. A. Mandelshtam. Quantum statistical mechanics with Gaussians: equilibrium properties of van der Waals clusters. Journal of Chemical Physics, 2004, 121(19): 9247–9256.

    Article  Google Scholar 

  80. I. G. Vladimirov. A phase-space formulation of the Belavkin-Kushner-Stratonovich filtering equation for nonlinear quantum stochastic systems. IEEE Conference on Norbert Wiener in the 21st Century, University of Melbourne, Australia: IEEE, 2016: 84–89.

    Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor G. Vladimirov.

Additional information

This paper is dedicated to Professor Ian R. Petersen on the occasion of his 60th birthday. This work was initiated while the author was with the UNSW Canberra, Australia, where it was supported by the Australian Research Council, and was completed at the Australian National University under support of the Air Force Office of Scientific Research (AFOSR) under agreement number FA2386-16-1-4065. A brief version [80] of this paper was presented at the IEEE 2016 Conference on Norbert Wiener in the 21st Century, 13-15 July 2016, Melbourne, Australia.

Igor G. VLADIMIROV received M.Sc. degree in Control Systems in 1989 and Ph.D. degree in Physics and Mathematics (with specialization in Mathematical Cybernetics) in 1992 from the Department of Control and Applied Mathematics of the Moscow Institute (State University) of Physics and Technology, Russia. He worked as a Senior Research Associate at the State Research Institute of Aviation Systems in 1993–1997 and the Institute for Information Transmission Problems, the Russian Academy of Sciences, Moscow, in 1994–2007, in the areas of applied Kalman filtering, stochastic robust control, hysteresis systems and spatially discretized dynamical systems. From 1997 to 2008, Dr. Vladimirov held research academic positions at the Mathematics Department and School of Engineering at the University of Queensland, Brisbane, Australia, working in the above areas and in stochastic modelling of econometric time series, lattice models of statistical mechanics and transport phenomena in random media. In 2000, he also had a visiting research fellowship at the School of Mathematical Sciences, Queen Mary and Westfield College, University of London, working on p-adic analysis of Hamiltonian roundoff. From 2009 to 2016, Dr. Vladimirov was a Senior Research Fellow at the University of New South Wales Canberra, doing research on quantum stochastic filtering and control, which he continues after moving to the Australian National University in 2017. In 2013, Dr. Vladimirov was awarded B.N.Petrov prize of the Russian Academy of Sciences for his works on the anisotropy-based theory of stochastic robust filtering and control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, I.G. A phase-space formulation and Gaussian approximation of the filtering equations for nonlinear quantum stochastic systems. Control Theory Technol. 15, 177–192 (2017). https://doi.org/10.1007/s11768-017-7012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-017-7012-2

Keywords

Navigation