Skip to main content
Log in

On the Existence for the Free Interface 2D Euler Equation with a Localized Vorticity Condition

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We prove a local-in-time existence of solutions result for the two dimensional incompressible Euler equations with a moving boundary, with no surface tension, under the Rayleigh–Taylor stability condition. The main feature of the result is a local regularity assumption on the initial vorticity, namely \(H^{1.5+\delta }\) Sobolev regularity in the vicinity of the moving interface in addition to the global regularity assumption on the initial fluid velocity in the \(H^{2+\delta }\) space. We use a special change of variables and derive a priori estimates, establishing the local-in-time existence in \(H^{2+\delta }\). The assumptions on the initial data constitute the minimal set of assumptions for the existence of solutions to the rotational flow problem to be established in 2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: Low regularity Cauchy theory for the water-waves problem: canals and swimming pools. Journ. Équ. Dériv. Partielles. p. 20 (2011)

  3. Alazard, T., Delort, J.M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. arXiv:1305.4090 (2013)

  4. Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58(2), 479–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beale, J.T.: The initial value problem for the Navier-Stokes equations with a free surface. Commun. Pure Appl. Math. 34(3), 359–392 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boulakia, M., Guerrero, S.: Regular solutions of a problem coupling a compressible fluid and an elastic structure. J. Math. Pures Appl. 94, 341–365 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beale, J.T., Hou, T.Y., Lowengrub, J.S.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46(9), 1269–1301 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1(4), 387–404 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, A., Cordoba, D., Fefferman, C., Gancedo, F., Gomez-Serrano, J.: Splash singularity for water waves. Proc. Natl. Acad. Sci. 109(3), 733–738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, A., Lannes, D.: Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity. arXiv:1402.0464 [math.AP], (2014)

  12. Cauchy, A.L.: Sur l’état du fluide à une époque quelconque du mouvement, Mémoires extraits des recueils de l’Académie des sciences de l’Institut de France, Sciences mathématiques et physiques, Tome I, (1827), Seconde Partie, pp. 33–73

  13. Constantin, P.: Euler and Navier–Stokes equations. Publ. Mat. 52(2), 235–265 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, P.: An EulerianLagrangian approach for incompressible fluids: local theory. J. Am. Math. Soc. 14, 263–278 (2000)

    Article  MathSciNet  Google Scholar 

  15. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coutand, D., Shkoller, S.: A simple proof of well-posedness for the free-surface incompressible Euler equations. Discret. Contin. Dyn. Syst. Ser. S 3(3), 429–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ebin, D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elgindi, T., Lee, D.: Uniform regularity for free-boundary Navier–Stokes equations with surface tension. arXiv:1403.0980 (2014)

  21. Frisch, U., Villone, B.: Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. Eur. Phys. J. H 39, 325–351 (2014)

    Article  Google Scholar 

  22. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity surface water waves equation in dimension 3. Ann. Math. 175(2), 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hunter, J., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates, arXiv:1401.1252 (2014)

  24. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global solutions. arXiv:1404.7583 (2014)

  25. Iguchi, T.: Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac. 44(2), 219–241 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199(3), 653–804 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kukavica, I., Tuffaha, A.: On the 2D free boundary Euler equation. Evol. Equ. Control Theory 1, 297–314 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kukavica, I., Tuffaha, A.: A regularity result for the incompressible Euler equation with a free interface. Appl. Math. Optim. 69, 337–358 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kukavica, I., Tuffaha, A.: Well-posedness for the compressible Navier-Stokes-Lamé system with a free interface. Nonlinearity 25, 3111–3137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kukavica, I., Tuffaha, A., Vicol, V.: On the local existence and uniqueness for the 3D Euler equation with a free interface (submitted)

  31. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lindblad, H.: Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Commun. Pure Appl. Math. 56(2), 153–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(2), 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  35. Masmoudi, N., Rousset, F.: Uniform regularity and vanishing viscosity limit for the free surface Navier–Stokes equations. arXiv:1202.0657 (2012)

  36. Nalimov, V.I.: The Cauchy–Poisson problem, Dinamika Splošn. Sredy, 18th edn, pp. 104–210. Dinamika Zidkost. so Svobod, Granicami (1974)

    Google Scholar 

  37. Iowa, M., Tani, A.: Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12(12), 1725–1740 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pusateri, F.: On the limit as the surface tension and density ratio tend to zero for the two-phase Euler equations. J. Hyperbolic Differ. Equ. 8(2), 347–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schweizer, B.: On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 753–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shinbrot, M.: The initial value problem for surface waves under gravity. I. The simplest case. Indiana Univ. Math. J. 25(3), 281–300 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shnirelman, A.I.: The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Mat. Sb. (N.S.) 128(170), vol. 1, 82–109, 144 (1985)

  42. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tani, A.: Small-time existence for the three-dimensional Navier–Stokes equations for an incompressible fluid with a free surface. Arch. Ration. Mech. Anal. 133(4), 299–331 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Temam, R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20(1), 32–43 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in \(2\)- D. Invent. Math. 130(1), 39–72 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, S.: Global well posedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu, L., Zhang, Z.: On the free boundary problem to the two viscous immiscible fluids. J. Differ. Equ. 248(5), 1044–1111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yosihara, H.: Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ. 23(4), 649–694 (1983)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, P., Zhang, Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I.K. and F.W. were supported in part by the NSF Grant DMS-1311943, while V.V. was supported in part by the NSF Grant DMS-1514771 and an A.P. Sloan fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kukavica.

Additional information

To the memory of Professor A.V. Balakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukavica, I., Tuffaha, A., Vicol, V. et al. On the Existence for the Free Interface 2D Euler Equation with a Localized Vorticity Condition. Appl Math Optim 73, 523–544 (2016). https://doi.org/10.1007/s00245-016-9346-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9346-4

Keywords

Navigation