Skip to main content

Advertisement

Log in

Mercury Accumulation, Structural Damages, and Antioxidant and Immune Status Changes in the Gilthead Seabream (Sparus aurata L.) Exposed to Methylmercury

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In aquatic systems, mercury (Hg) is an environmental contaminant that causes acute and chronic damage to multiple organs. In fish, practically all of the organic Hg found is in the form of methylmercury (MeHg), which has been associated with animal and human health problems. This study evaluates the impact of waterborne-exposure to sublethal concentrations of MeHg (10 μg L−1) in gilthead seabream (Sparus aurata). Hg was seen to accumulate in liver and muscle, and histopathological damage to skin and liver was detected. Fish exposed to MeHg showed a decreased biological antioxidant potential and increased levels of the reactive oxygen molecules compared with the values found in control fish (nonexposed). Increased liver antioxidant enzyme activities (superoxide dismutase and catalase) were detected in 2 day-exposed fish with respect to the values of control fish. However, fish exposed to MeHg for 10 days showed liver antioxidant enzyme levels similar to those of the control fish but had increased hepato-somatic index and histopathological alterations in liver and skin. Serum complement levels were higher in fish exposed to MeHg for 30 days than in control fish. Moreover, head–kidney leukocyte activities increased, although only phagocytosis and peroxidase activities showed a significant increase after 10 and 30 days, respectively. The data show that 30 days of exposure to waterborne MeHg provokes more significant changes in fish than a short-term exposure of 2 or 10 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu SN, Pereira E, Vale C, Duarte AC (2000) Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal). Mar Pollut Bull 40:293–297

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alvarez MDC, Murphy CA, Rose KA et al (2006) Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus). Aquat Toxicol 80:329–337

    Article  CAS  Google Scholar 

  • Aschner M, Syversen T, Souza DO et al (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–291

    Article  CAS  Google Scholar 

  • Baatrup E (1991) Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comp Biochem Physiol C 100:253–257

    Article  CAS  Google Scholar 

  • Bayne CJ, Levy S (1991) Modulation of the oxidative burst in trout myeloid cells by adrenocorticotropic hormone and catecholamines: mechanisms of action. J Leukoc Biol 50:554–560

    CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP et al (1998) Behavior of mercury in the Patuxent River estuary. Biogeochemistry 40:249–265

    Article  CAS  Google Scholar 

  • Berg K, Puntervoll P, Valdersnes S, Goksøyr A (2010) Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquat Toxicol 100:51–65

    Article  CAS  Google Scholar 

  • Berntssen MHG, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65:55–72

    Article  CAS  Google Scholar 

  • Bourdineaud JP, Fujimura M, Laclau M et al (2011) Deleterious effects in mice of fish-associated methylmercury contained in a diet mimicking the Western populations’ average fish consumption. Environ Int 37:303–313

    Article  CAS  Google Scholar 

  • Branco V, Canário J, Holmgren A, Carvalho C (2011) Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicol Appl Pharmacol 251:95–103

    Article  CAS  Google Scholar 

  • Branco V, Canário J, Lu J et al (2012) Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase. Free Radic Biol Med 52:781–793

    Article  CAS  Google Scholar 

  • Cambier S, Bénard G, Mesmer-Dudons N et al (2009) At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int J Biochem Cell Biol 41:791–799

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    CAS  Google Scholar 

  • Ciardullo S, Aureli F, Coni E et al (2008) Bioaccumulation potential of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss) as a function of fish growth. J Agric Food Chem 56:2442–2451

    Article  CAS  Google Scholar 

  • Cuesta A, Meseguer J, Esteban MA (2004) Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Vet Immunol Immunopathol 101:203–210

    Article  CAS  Google Scholar 

  • Depew DC, Basu N, Burgess NM et al (2012) Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations. Environ Toxicol Chem 31:1536–1547

    Article  CAS  Google Scholar 

  • Drevnick PE, Sandheinrich MB, Oris JT (2006) Increased ovarian follicular apoptosis in fathead minnows (Pimephales promelas) exposed to dietary methylmercury. Aquat Toxicol 79:49–54

    Article  CAS  Google Scholar 

  • EC (2001) Commission regulation (EC) No. 466/2001. Official Journal of the European Communities. European Economic Community, Brussels

    Google Scholar 

  • Esteban M, Mulero V, Muñoz J, Meseguer J (1998) Methodological aspects of assessing phagocytosis of Vibrio anguillarum by leucocytes of gilthead seabream (Sparus aurata L.) by flow cytometry and electron microscopy. Cell Tissue Res 293:133–141

    Article  CAS  Google Scholar 

  • Evans DW, Dodoo DK, Hanson PJ (1993) Trace element concentrations in fish livers: Implications of variations with fish size in pollution monitoring. Mar Pollut Bull 26:329–334

    Article  CAS  Google Scholar 

  • Falcó G, Llobet JM, Bocio A, Domingo JL (2006) Daily intake of arsenic, cadmium, mercury, and lead by consumption of edible marine species. J Agric Food Chem 54:6106–6112

    Article  Google Scholar 

  • FAO/WHO (1991) Codex alimentarius guideline levels for methylmercury in fish. CAC/GL 7-1991

  • Gehringer DB, Finkelstein ME, Coale KH et al (2013) Assessing mercury exposure and biomarkers in largemouth bass (Micropterus salmoides) from a contaminated river system in California. Arch Environ Contam Toxicol 64:484–493

    Article  CAS  Google Scholar 

  • Grinwis GCM, Besselink HT, van den Brandhof EJ et al (2000) Toxicity of TCDD in European flounder (Platichthys flesus) with emphasis on histopathology and cytochrome P450 1A induction in several organ systems. Aquat Toxicol 50:387–401

    Article  CAS  Google Scholar 

  • Gonzalez P, Dominique Y, Massabuau JC et al (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ Sci Technol 39:3972–3980

    Article  CAS  Google Scholar 

  • Guardiola FA, Cuesta A, Meseguer J et al (2013a) Accumulation, histopathology and immunotoxicological effects of waterborne cadmium on gilthead seabream (Sparus aurata). Fish Shellfish Immunol 35:792–800

    Article  CAS  Google Scholar 

  • Guardiola FA, Gónzalez-Párraga P, Meseguer J et al (2014) Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 36:120–129

    Article  CAS  Google Scholar 

  • Guardiola FA, Dioguardi M, Parisi MG et al (2015) Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish Shellfish Immunol 45:112–123

    Article  CAS  Google Scholar 

  • Guardiola FA, Gónzalez-Párraga MP, Cuesta A et al (2013b) Immunotoxicological effects of inorganic arsenic on gilthead seabream (Sparus aurata L.). Aquat Toxicol 134–135:112–119

    Article  Google Scholar 

  • Hamed MA, Mohamedein LI, El-Sawy MA, El-Moselhy KM (2013) Mercury and tin contents in water and sediments along the Mediterranean shoreline of Egypt. Egypt J Aquat Res 39:75–81

    Article  Google Scholar 

  • Harris H, Pickering I, George G (2003) The chemical form of mercury in fish. Science 301(5637):1203

    Article  CAS  Google Scholar 

  • Has-Schön E, Bogut I, Rajković V et al (2008) Heavy metal distribution in tissues of six fish species included in human diet, inhabiting freshwaters of the Nature Park “Hutovo Blato” (Bosnia and Herzegovina). Arch Environ Contam Toxicol 54:75–83

    Article  Google Scholar 

  • Houck A, Cech JJ (2004) Effects of dietary methylmercury on juvenile Sacramento blackfish bioenergetics. Aquat Toxicol 69:107–123

    Article  CAS  Google Scholar 

  • Kaur P, Aschner M, Syversen T (2006) Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology 27:492–500

    Article  CAS  Google Scholar 

  • Kennedy CJ (2003) Uptake and accumulation of mercury from dental amalgam in the common goldfish, Carassius auratus. Environ Pollut 121:321–326

    Article  CAS  Google Scholar 

  • Kirubagaran R, Joy KP (1988) Toxic effects of three mercurial compounds on survival, and histology of the kidney of the catfish Clarias batrachus (L.). Ecotoxicol Environ Saf 15:171–179

    Article  CAS  Google Scholar 

  • Klaper R, Rees CB, Drevnick P et al (2006) Gene expression changes related to endocrine function and decline in reproduction in fathead minnow (Pimephales promelas) after dietary methylmercury exposure. Environ Health Perspect 114:1337–1343

    Article  CAS  Google Scholar 

  • Low KW, Sin YM (1998) Effects of mercuric chloride and sodium selenite on some immune responses of blue gourami, Trichogaster trichopterus (Pallus). Sci Total Environ 214:153–164

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  Google Scholar 

  • Mela M, Neto FF, Yamamoto FY et al (2014) Mercury distribution in target organs and biochemical responses after subchronic and trophic exposure to Neotropical fish Hoplias malabaricus. Fish Physiol Biochem 40:245–256

    Article  CAS  Google Scholar 

  • Minganti V, Drava G, PellegriniR De et al (2010) Trace elements in farmed and wild gilthead seabream, Sparus aurata. Marine Poll Bull 60:2022–2025

    Article  CAS  Google Scholar 

  • Morcillo P, Cordero H, Meseguer J et al (2015) Toxicological in vitro effects of heavy metals on gilthead seabream (Sparus aurata L.) head–kidney leucocytes. Toxicol Vitro 30:412–420

    Article  CAS  Google Scholar 

  • Morcillo P, Esteban M, Cuesta A (2016) Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere 144:225–233

    Article  CAS  Google Scholar 

  • Murphy CA, Rose KA, Alvarez MDC, Fuiman LA (2008) Modeling larval fish behavior: scaling the sublethal effects of methylmercury to population-relevant endpoints. Aquat Toxicol 86:470–484

    Article  CAS  Google Scholar 

  • Nakao M, Tsujikura M, Ichiki S et al (2011) The complement system in teleost fish: progress of post-homolog-hunting researches. Dev Comp Immunol 35:1296–1308

    Article  CAS  Google Scholar 

  • Ni M, Li X, Yin Z et al (2010) Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 116:590–603

    Article  CAS  Google Scholar 

  • Niimi AJ, Kissoon GP (1994) Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to rainbow trout (Oncorhynchus mykiss). Arch Environ Contam Toxicol 26:169–178

    Article  CAS  Google Scholar 

  • Nøstbakken OJ, Martin SAM, Cash P et al (2012) Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquat Toxicol 108:70–77

    Article  Google Scholar 

  • Oliveira Ribeiro CA, Belger L, Pelletier E, Rouleau C (2002) Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environ Res 90:217–225

    Article  Google Scholar 

  • Oliveira Ribeiro CA, Filipak Neto F, Mela M et al (2006) Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead, and tributyltin chloride. Environ Res 101:74–80

    Article  CAS  Google Scholar 

  • Olsson P, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and toxicity in fish. In: Langston W, Bebianno M (eds) Metal metabolism in aquatic environments. Chapman & Hall, London, pp 321–350

    Chapter  Google Scholar 

  • Ortuño J, Esteban MÁ, Mulero V, Meseguer J (1998) Methods for studying the haemolytic, chemoattractant and opsonic activities of seabream (Sparus aurata L.). In: Barnes AC, Davidson GA, Hiney M, McInthos D (eds) Methodology in fish diseases research. Albion Press, Aberdeen, pp 97–100

    Google Scholar 

  • Ou YC, White CC, Krejsa CM et al (1999) The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology 20:793–804

    CAS  Google Scholar 

  • Quade MJ, Roth JA (1997) A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol 58:239–248

    Article  CAS  Google Scholar 

  • Roales RR, Perlmutter A (1974) Toxicity of methylmercury and copper, applied singly and jointly, to the blue gourami, Trichogaster trichopterus. Bull Environ Contam Toxicol 12:633–639

    Article  CAS  Google Scholar 

  • Rodríguez A, Esteban MA, Meseguer J (2003) Phagocytosis and peroxidase release by seabream (Sparus aurata L.) leucocytes in response to yeast cells. Anat Rec A Discov Mol Cell Evol Biol 272:415–423

    Article  Google Scholar 

  • Samson JC, Goodridge R, Olobatuyi F, Weis JS (2001) Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg). Aquat Toxicol 51:369–376

    Article  CAS  Google Scholar 

  • Sanchez-Dardon J, Voccia I, Hontela A et al (1999) Immunomodulation by heavy metals tested individually or in mixtures in rainbow trout (Oncorhynchus mykiss) exposed in vivo. Environ Toxicol Chem 18:1492–1497

    Article  CAS  Google Scholar 

  • Sandheinrich M, Wiener J (2011) Methylmercury in freshwater fish: recent advances in assessing toxicity of environmentally relevant exposures. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations, 2nd edn. Taylor and Francis Publishers, Boca Raton, pp 169–190

    Chapter  Google Scholar 

  • Sarmento A, Guilhermino L, Afonso A (2004) Mercury chloride effects on the function and cellular integrity of sea bass (Dicentrarchus labrax) head kidney macrophages. Fish Shellfish Immunol 17:489–498

    Article  CAS  Google Scholar 

  • Schlenk D, Celander M, Gallagher EP et al (2008) Biotransformation in fishes. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. Taylor & Francis, New York, pp 153–234

    Chapter  Google Scholar 

  • Shanker G, Syversen T, Aschner JL, Aschner M (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Mol Brain Res 137:11–22

    Article  CAS  Google Scholar 

  • Sindayigaya E, Vancauwenbergh R, Robberecht H, Deelstra H (1994) Copper, zinc, manganese, iron, lead, cadmium, mercury and arsenic in fish from lake Tanganyika, Burundi. Sci Total Environ 144:103–115

    Article  CAS  Google Scholar 

  • Squadrone S, Benedetto A, Brizio P et al (2015) Mercury and selenium in European catfish (Silurus glanis) from Northern Italian Rivers: can molar ratio be a predictive factor for mercury toxicity in a top predator? Chemosphere 119:24–30

    Article  CAS  Google Scholar 

  • Sweet LI, Zelikoff JT (2001) Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J Toxicol Environ Health B Crit Rev 4:161–205

    Article  CAS  Google Scholar 

  • Weber DN, Connaughton VP, Dellinger JA et al (2008) Selenomethionine reduces visual deficits due to developmental methylmercury exposures. Physiol Behav 93:250–260

    Article  CAS  Google Scholar 

  • WHO (1990) Environmental health criteria. WHO, Geneva

    Google Scholar 

  • Yabanli M, Alparslan Y, Baygar T (2012) Assessment of cadmium, mercury and lead contents of frozen Eurorean sea bass (Dicentrarchus labrax L., 1758) and gilthead sea bream (Sparus aurata L., 1758) fillets from Turkey. Agric Sci 3:669–673

    Google Scholar 

  • Yadetie F, Karlsen OA, Lanzén A et al (2013) Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquat Toxicol 126:314–325

    Article  CAS  Google Scholar 

  • Yin Z, Milatovic D, Aschner JL et al (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131:1–10

    Article  CAS  Google Scholar 

  • Zelikoff JT (1998) Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology 129:63–71

    Article  CAS  Google Scholar 

  • Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ Int 33:108–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Spanish Ministerio de Economía y Competitividad under Grant No. AGL-2011-30381-C03-01 and Fundación Séneca de la Región de Murcia (Spain) (Grant No. 19883/GERM/15, Grupo de Excelencia de la Región de Murcia) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Esteban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardiola, F.A., Chaves-Pozo, E., Espinosa, C. et al. Mercury Accumulation, Structural Damages, and Antioxidant and Immune Status Changes in the Gilthead Seabream (Sparus aurata L.) Exposed to Methylmercury. Arch Environ Contam Toxicol 70, 734–746 (2016). https://doi.org/10.1007/s00244-016-0268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0268-6

Keywords

Navigation