Skip to main content

Advertisement

Log in

Factors Affecting Antioxidant Response in Fish from a Long-term Mercury-Contaminated Reservoir

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The objective of this work was to evaluate antioxidant defence and oxidative damage in organs (liver, gills, kidney, and brain) of five fish species (Aspius aspius, Esox lucius, Sander lucioperca, Abramis brama, Rutilus rutilus) from the long-term mercury-contaminated Skalka Reservoir in the Czech Republic. Special emphasis was placed on a comprehensive assessment of the factors that may affect the antioxidant response to mercury in fish. Antioxidant enzymes (glutathione reductase, glutathione peroxidase, and glutathione-S-transferase) did not significantly respond to mercury contamination. Levels of the analysed enzymes and oxidative damage to lipids were predominantly determined by a separate organ factor or species factor, or by the combination of both (p < 0.001). Levels of total glutathione and the reduced/oxidized glutathione ratio were influenced by mercury contamination in combination with their specific organ distribution (p < 0.001). Our results suggest that species and type of organ alone or in combination are more important factors than chronic exposure to mercury contamination with respect to effects on antioxidant defence in fish under field conditions. Our findings suggest that the main antioxidant defensive mechanism in fish from the studied long-term mercury contaminated site was the inter-tissue distribution of glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I, Maria VL, Oliveira M, Pacheco M, Santos MA (2006) Oxidative stress and genotoxic effects in gill and kidney of Anguilla anguilla L. exposed to chromium with or without pre-exposure to beta-naphthoflavone. Mutat Res Genet Toxicol Environ Mutagen 608(1):16–28. doi:10.1016/j.mrgentox.2006.04.020

    Article  CAS  Google Scholar 

  • Bebianno MJ, Santos C, Canario J, Gouveia N, Sena-Carvalho D, Vale C (2007) Hg and metallothionein-like proteins in the black scabbardfish Aphanopus carbo. Food Chem Toxicol 45(8):1443–1452. doi:10.1016/j.fct.2007.02.003

    Article  CAS  Google Scholar 

  • Berntssen MHG, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65(1):55–72. doi:10.1016/s0166-445x(03)00104-8

    Article  CAS  Google Scholar 

  • Campana O, Sarasquete C, Blasco J (2003) Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicol Environ Saf 55(1):116–125. doi:10.1016/s0147-6513(02)00093-3

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of flavoenzyme glutathione reductase from rat-liver. J Biol Chem 250(14):5475–5480

    CAS  Google Scholar 

  • Downs SG, Macleod CL, Lester JN (1998) Mercury in precipitation and its relation to bioaccumulation in fish: A literature review. Water Air Soil Pollut 108(1–2):149–187. doi:10.1023/a:1005023916816

    Article  CAS  Google Scholar 

  • Dusek L, Svobodova Z, Janouskova D, Vykusova B, Jarkovsky J, Smid R, Pavlis P (2005) Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): multispecies monitoring study 1991–1996. Ecotoxicol Environ Saf 61(2):256–267. doi:10.1016/j.ecoenv.2004.11.007

    Article  CAS  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55(2):162–167. doi:10.1016/s0147-6513(02)00123-9

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  Google Scholar 

  • Eyckmans M, Celis N, Horemans N, Blust R, De Boeck G (2011) Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat Toxicol 103(1–2):112–120. doi:10.1016/j.aquatox.2011.02.010

    Article  CAS  Google Scholar 

  • Farrington JW (1991) Biogeochemical processes govering exposure and uptake of organic pollutant compounds in aquatic organisms. Environ Health Perspect 90:75–84. doi:10.2307/3430848

    Article  CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione-peroxidase. Methods Enzymol 105:114–121

    Article  CAS  Google Scholar 

  • Friedmann AS, Watzin MC, Brinck Johnsen T, Leiter JC (1996) Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquat Toxicol 35(3–4):265–278. doi:10.1016/0166-445x(96)00796-5

    Article  CAS  Google Scholar 

  • Guilherme S, Valega M, Pereira ME, Santos MA, Pacheco M (2008) Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure - Relationship with mercury accumulation and implications for public health. Mar Pollut Bull 56(5):845–859. doi:10.1016/j.marpolbul.2008.02.003

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Google Scholar 

  • Hammerschmidt CR, Sandheinrich MB, Wiener JG, Rada RG (2002) Effects of dietary methylmercury on reproduction of fathead minnows. Environ Sci Technol 36(5):877–883. doi:10.1021/es011120p

    Article  CAS  Google Scholar 

  • Hansen BH, Romma S, Garmo OA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol C 143(3):263–274. doi:10.1016/j.cbpc.2006.02.010

    CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. doi:10.3109/10408449509089885

    Article  CAS  Google Scholar 

  • Hellou J, Ross NW, Moon TW (2012) Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ Sci Pollut Res 19(6):2007–2023. doi:10.1007/s11356-012-0909-x

    Article  CAS  Google Scholar 

  • Huang W, Cao L, Ye Z, Lin L, Chen Q, Dou S (2012) Tissue-specific bioaccumulation and oxidative stress responses in juvenile Japanese flounder (Paralichthys olivaceus) exposed to mercury. Chin J Ocean Limnol 30(4):569–579. doi:10.1007/s00343-012-1210-z

    Article  CAS  Google Scholar 

  • Kelly SA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106(7):375–384. doi:10.2307/3434064

    Article  CAS  Google Scholar 

  • Kretzschmar M (1996) Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Exp Toxicol Pathol 48(5):439–446

    Article  CAS  Google Scholar 

  • Krogdahl A, Sundby A, Olli JJ (2004) Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch level. Aquaculture 229(1–4):335–360. doi:10.1016/s0044-8486(03)00396-x

    Article  CAS  Google Scholar 

  • Kruzikova K, Dusek L, Jarkovsky J, Hejtmanek M, Vostradovsky J, Poleszczuk G, Svobodova Z (2011) Long-term monitoring of mercury content in fish from the Zelivka Reservoir-syndrom of newly filled reservoir. Int J Electrochem Sci 6(12):5956–5967

    CAS  Google Scholar 

  • Larose C, Canuel R, Lucotte M, Di Giulio RT (2008) Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp Biochem Physiol C 147(2):139–149. doi:10.1016/j.cbpc.2007.09.002

    Google Scholar 

  • Leaver MJ, George SG (1998) A piscine glutathione S-transferase which efficiently conjugates the end-products of lipid peroxidation. Mar Environ Res 46(1–5):71–74. doi:10.1016/s0141-1136(97)00071-8

    Article  CAS  Google Scholar 

  • Liao CY, Zhou QF, Fu JJ, Shi JB, Yuan CG, Jiang GB (2007) Interaction of methylmercury and selenium on the bioaccumulation and histopathology in Medaka (Oryzias latipes). Environ Toxicol 22(1):69–77. doi:10.1002/tox.20236

    Article  CAS  Google Scholar 

  • Livingstone DR (2003) Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Vet 154(6):427–430

    CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30. doi:10.1016/j.aquatox.2010.10.006

    Article  CAS  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB (2005) Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol 37(8):1670–1680. doi:10.1016/j.biocel.2005.02.024

    Article  CAS  Google Scholar 

  • Marsalek P, Svobodova Z, Randak T, Svehla J (2005) Mercury and methylmercury contamination of fish from the Skalka reservoir: a case study. Acta Vet BRNO 74(3):427–434. doi:10.2754/avb200574030427

    Article  CAS  Google Scholar 

  • Masaryk TG (2011) Water Research Institute, online database. http://heis.vuv.cz/data/webmap/isapi.dll?MAP=2971&QY={0}O[]P-700454.9281761529,+-1089110.8520281515&TOL=19.841269841269824&X=-700454.9281761529&Y=-1089110.8520281515&TYPE=tooltip&MU=CZ&LANG=CS-CZ&GEN=LSTD&TS=0. Accessed 13 May 2014

  • Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic ecosystems. Wiley, New York, pp 478–608

    Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760. doi:10.1146/annurev.bi.52.070183.003431

    Article  CAS  Google Scholar 

  • Mieiro CL, Ahmad I, Pereira ME, Duarte AC, Pacheco M (2010) Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology 19(6):1034–1045. doi:10.1007/s10646-010-0485-0

    Article  CAS  Google Scholar 

  • Mieiro CL, Bervoets L, Joosen S, Blust R, Duarte AC, Pereira ME, Pacheco M (2011a) Metallothioneins failed to reflect mercury external levels of exposure and bioaccumulation in marine fish: considerations on tissue and species specific responses. Chemosphere 85(1):114–121. doi:10.1016/j.chemosphere.2011.05.034

    Article  CAS  Google Scholar 

  • Mieiro CL, Duarte AC, Pereira ME, Pacheco M (2011b) Mercury accumulation patterns and biochemical endpoints in wild fish (Liza aurata): a multi-organ approach. Ecotoxicol Environ Saf 74(8):2225–2232. doi:10.1016/j.ecoenv.2011.08.011

    Article  CAS  Google Scholar 

  • Mieiro CL, Pereira ME, Duarte AC, Pacheco M (2011c) Brain as a critical target of mercury in environmentally exposed fish (Dicentrarchus labrax)-Bioaccumulation and oxidative stress profiles. Aquat Toxicol 103(3–4):233–240. doi:10.1016/j.aquatox.2011.03.006

    Article  CAS  Google Scholar 

  • Mieiro CL, Dolbeth M, Marques TA, Duarte AC, Pereira ME, Pacheco M (2014) Mercury accumulation and tissue-specific antioxidant efficiency in the wild European sea bass (Dicentrarchus labrax) with emphasis on seasonality. Environ Sci Pollut Res 21(18):10638–10651. doi:10.1007/s11356-014-3053-y

    Article  CAS  Google Scholar 

  • Miller LL, Hontela A (2011) Species-specific sensitivity to selenium-induced impairment of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Toxicol Appl Pharmacol 253(2):137–144. doi:10.1016/j.taap.2011.03.021

    Article  CAS  Google Scholar 

  • Miller LL, Rasmussen JB, Palace VP, Hontela A (2009) The physiological stress response and oxidative stress biomarkers in rainbow trout and brook trout from selenium-impacted streams in a coal mining region. J Appl Toxicol 29(8):681–688. doi:10.1002/jat.1458

    Article  CAS  Google Scholar 

  • Monteiro DA, Rantin FT, Kalinin AL (2013) Dietary intake of inorganic mercury: bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus. Ecotoxicology 22(3):446–456. doi:10.1007/s10646-012-1038-5

    Article  CAS  Google Scholar 

  • Navarro A, Quiros L, Casado M, Faria M, Carrasco L, Benejam L, Benito J, Diez S, Raldua D, Barata C, Bayona JM, Pina B (2009) Physiological responses to mercury in feral carp populations inhabiting the low Ebro River (NE Spain), a historically contaminated site. Aquat Toxicol 93(2–3):150–157. doi:10.1016/j.aquatox.2009.04.009

    Article  CAS  Google Scholar 

  • Radi AAR, Hai DQ, Matkovics B, Gabrielak T (1985) Comparative antioxidant enzyme study in fresh-water fish with different types od feeding-behaviour. Comp Biochem Physiol C 81(2):395–399. doi:10.1016/0742-8413(85)90026-x

    Article  Google Scholar 

  • Rincon Leon F, Zureracosano G, Morenorojas R, Amarolopez M (1993) Importance of eating habits and sample-size in the estimation of environmental mercury contamination using biological indicators. Environ Monit Assess 27(3):193–200. doi:10.1007/bf00548365

    Article  CAS  Google Scholar 

  • Sevcikova M, Modra H, Kruzikova K, Zitka O, Hynek D, Adam V, Celechovska O, Kizek R, Svobodova Z (2013) Effect of metals on metallothionein content in fish from Skalka and Zelivka Reservoirs. Int J Electrochem Sci 8(2):1650–1663

    CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. doi:10.1016/0003-2697(85)90442-7

    Article  CAS  Google Scholar 

  • Soukup Z (2004) Monitoring of mercury, arsenic and other hazardous elements in the ecosystem Skalka Reservoir near Cheb (Master’s thesis - Czech). University of South Bohemia in Ceske Budejovice, Ceske Budejovice

    Google Scholar 

  • Srikanth K, Pereira E, Duarte AC, Ahmad I (2013) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish: a review. Environ Sci Pollut Res 20(4):2133–2149. doi:10.1007/s11356-012-1459-y

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal-ions. Free Radic Biol Med 18(2):321–336. doi:10.1016/0891-5849(94)00159-h

    Article  CAS  Google Scholar 

  • Svobodova Z, Hejtmanek M (1976) Total mercury content in musculature of fishes from river ohre and its tributaries. Acta Vet BRNO 45(1–2):45–49

    CAS  Google Scholar 

  • Svobodova Z, Hejtmanek M, Prikril I, Kocova A (1988) The content of total mercury in the individual components of the ecosystem of the Zelivka water supply reservoir. II. Fish. Bul VURH Vodnany 24:3–6

    Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. doi:10.1016/s1382-6689(02)00126-6

    Article  Google Scholar 

  • Wendelaar Bonga SE, Lock RAC (2008) The osmoregulatory system. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, pp 401–416

    Chapter  Google Scholar 

  • Wester PW, Canton HH (1992) Histopathological effects in Poecilia reticulata (guppy) exposed to methyl mercury-chloride. Toxicol Pathol 20(1):81–92

    Article  CAS  Google Scholar 

  • WHO (1976) Environmental health criteria, Mercury. WHO, Geneva

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by IGA VFU 88/2011/FVHE. The authors thank Matthew Nicholls for proofreading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sevcikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevcikova, M., Modra, H., Blahova, J. et al. Factors Affecting Antioxidant Response in Fish from a Long-term Mercury-Contaminated Reservoir. Arch Environ Contam Toxicol 69, 431–439 (2015). https://doi.org/10.1007/s00244-015-0213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-015-0213-0

Keywords

Navigation