Skip to main content

Advertisement

Log in

Mercury accumulation and its effects on molecular, physiological, and histopathological responses in the peacock blenny Salaria pavo

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

For humans, fish consumption is the major source of mercury (Hg) exposure. The aim of this study was to assess the effect of Hg in the peacock blenny Salaria pavo, a species of the family of blennies that was used as indicator of water pollution. We performed a sublethal contamination of fish to 66 μg HgCl2 L−1 during 1, 4, 10 and 15 days but Hg concentration measured in the experimental water was much lower than the nominal concentration. Hg was also measured in both gill and liver tissues and displays a significant increase of its concentration in gills after 1 day of exposure followed by a decrease throughout the experiment. In the liver, Hg burden reaches its maximum at day 4 followed also by a decrease. Partial-length cDNA of mt1, mt2, gpx, cat, mnsod and cuznsod was characterized. Results from mRNA expression levels displayed an up-regulation of mt1, gpx and mnsod while a downregulation of cat was observed. Several biomarker activities were determined in gills and liver and exposure to Hg affected all antioxidant enzymes in gills. EROD, GST and GPx significantly decreased, while CAT levels increased from 4 days of Hg exposure. No lipid peroxidation (LPO) induction was observed in gills of exposed fish. Regarding the liver, the activity of all enzymes increased significantly from the beginning of the experiment. LPO induction was, however, induced after 4 days only. The histological analysis also performed indicated that fish exhibited several damages in gills and liver, mainly in relation to circulatory disturbances in the gills and regressive changes in the liver. All biomarkers assessed showed that peacock blennies are able to detoxify Hg from gill and liver tissues by developing various defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DH, Sonne C, Basu N, Dietz R, Nam DH, Leifsson PS, Jensen AL (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408(23):5808–5816

    Article  CAS  Google Scholar 

  • Adams DH, Sonne C (2013) Mercury and histopathology of the vulnerable goliath grouper, Epinephelus itajara, in U.S. waters: a multi-tissue approach. Environ Res 126:254–263

    Article  CAS  Google Scholar 

  • Agbohessi PT, Toko II, Atchou V, Tonato R, Mandiki SN, Kestemont P (2015a) Pesticides used in cotton production affect reproductive development, endocrine regulation, liver status and offspring fitness in African catfish Clarias gariepinus (Burchell, 1822). Comp Biochem Physiol C 167:157–172

    CAS  Google Scholar 

  • Agbohessi PT, Toko II, Ouédraogo A, Jauniaux T, Mandiki SN, Kestemont P (2015b) Assessment of the health status of wild fish inhabiting a cotton basin heavily impacted by pesticides in Benin (West Africa). Sci Total Environ 507:567–584

    Article  Google Scholar 

  • Alazemi BM, Lewis JW, Andrews EB (1996) Gill damage in the freshwater fish Gnathonemus petersii (Family:Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ Technol 17:225–238

    Article  CAS  Google Scholar 

  • Allen P, Min SY, Keong WM (1988) Acute effects of mercury chloride on intracellular GSH levels and mercury distribution in the fish Oreochromis aureus. Bull Environ Contam Toxicol 40:178–184

    Article  CAS  Google Scholar 

  • Angelow RV, Nicholls DM (1991) The effect of mercury exposure on liver mRNA translatability and metallothionein in rainbow trout. Comp Biochem Physiol 3:439–444

    Google Scholar 

  • Arellano JM, Storch V, Sarasquete C (1999) Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. J Ecotoxicol Environ Saf 44:62–72

    Article  CAS  Google Scholar 

  • Baudhuin P, Beaufay H, Rahman-Li Y, Sellinger OZ, Wattiaux R, Jacques P, De Duve C (1964) Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, d-amino acid oxidase and catalase in rat-liver tissue. Biochem J 92:179–184

    Article  CAS  Google Scholar 

  • Baudrimont M, Metivaud J, Maury-Brachet R, Ribeyre F, Boudou A (1997) Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury. Environ Toxicol Chem 16:2096–2105

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-Hol P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34

    Article  Google Scholar 

  • Berntssen MH, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65:55–72

    Article  CAS  Google Scholar 

  • Blanck A (2008) Atmospheric deposition of hazardous substances/SRM MO. Agency for Marine Protected Areas. IFREMER

  • Cambier S, Gonzalez P, Durrieu G, Maury-Brachet R, Boudou A, Bourdineaud JP (2010) Serial analysis of gene expression in the skeletal muscles of zebrafish fed with a methylmercury-contaminated diet. Environ Sci Technol 44:469–475

    Article  CAS  Google Scholar 

  • Cappello T, Brandão F, Guilherme S, Santos MA, Maisano M, Mauceri A, Canário J, Pacheco M, Pereira P (2016) Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining 1 H NMR metabolomics and conventional biochemical assays. Sci Total Environ 13(24):548–549

    Google Scholar 

  • Chen C, Amirbahman A, Fisher N, Harding G, Lamborg C, Nacci D, Taylor D (2008) Methylmercury in marine ecosystems: spatial patterns and processes of production, bioaccumulation, and biomagnification. Eco Health 5:399–408

    Google Scholar 

  • Chen MH, Chen CY (1999) Bioaccumulation of sediment bound heavy metals in grey mullet. Liza macrolepis. Mar Pollut Bull 39:239–244

    Article  CAS  Google Scholar 

  • Cong M, Wu H, Liu X, Zhao J, Wang X, Lv J, Hou L (2012) Effects of heavy metals on the expression of a zinc-inducible metallothionein-III gene and antioxidant enzyme activities in Crassostrea gigas. Ecotoxicology 21:1928–1936

    Article  CAS  Google Scholar 

  • Dautremepuits C, Marcogliese DJ, Gendron AD, Fournier M (2009) Gill and kidney antioxidant processes and innate immune system responses of yellow perch (Perca flavescens) exposed to different contaminants in the St. Lawrence River, Canada. Sci Total Environ 407:1055–1064

    Article  CAS  Google Scholar 

  • Devlin EW (2006) Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicology 15:97–110

    Article  CAS  Google Scholar 

  • El-Demerdash FM, Elagamy EI (1999) Biological effects in Tilapia nilotica fish as indicators of pollution by cadmium and mercury. Int J Environ Heal R 9:173–186

    Article  CAS  Google Scholar 

  • Elumalai M, Antunes C, Guilhermino L (2007) Enzymatic biomarkers in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere 66:1249–1255

    Article  CAS  Google Scholar 

  • Fang Y, Yang H, Liu B (2012) Tissue-specific response of metallothionein and superoxide dismutase in the clam Mactra veneriformis under sublethal mercury exposure. Ecotoxicology 21:1593–1602

    Article  CAS  Google Scholar 

  • Faria M, Carrasco L, Diez S, Riva MC, Bayona JM, Barata C (2009) Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. Com Biochem Physiol C 149:281–288

    Google Scholar 

  • Fatima M, Ahmad Y, Sayeed Y, Athar M, Raisuddin S (2000) Pollutant-induced over-activation of phagocytes is concomitantly associated with peroxidative damage in fish tissues. Aquat Toxicol 49:243–250

    Article  CAS  Google Scholar 

  • Gailer J (2007) Arsenic-selenium and mercury-selenium bonds in biology. Coordin Chem Rev 251:234–254

    Article  CAS  Google Scholar 

  • Ghosh D, Mandal DK (2014) Mercuric chloride induced toxicity responses in the olfactory epithelium of Labeo rohita (HAMILTON): a light and electron microscopy study. Fish Physiol Biochem 40:83–92

    Article  CAS  Google Scholar 

  • Giari L, Simoni E, Dezfuli BS (2008) Histo-cytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicol Environ Saf 70:400–410

    Article  CAS  Google Scholar 

  • Gonzalez P, Dominique Y, Massabuau JC, Boudou A, Bourdineaud JP (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ Sci Technol 39:3972–3980

    Article  CAS  Google Scholar 

  • Guilherme S, Válega M, Pereira M, Santos M, Pacheco M (2008) Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure relationship with mercury accumulation and implications for public health. Mar Pollut Bull 56:845–859

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hinton DE, Lauren DJ (1990) Liver structural alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure. Biomark Environ Contam 28

  • Huang W, Cao L, Liu JH, Lin LS, Dou SZ (2010) Short-term mercury exposure affecting the development and antioxidant biomarkers of Japanese flounder embryos and larvae. Ecotoxicol Environ Saf 73:1875–1883

    Article  CAS  Google Scholar 

  • Ishikawa NM, Ranzani-Paiva MJT, Lombardi JV (2007) Acute toxicity of mercury (HgCl2) to Nile tilapia, Oreochromis niloticus. B Inst Pesca Paulo 33:99–104

    Google Scholar 

  • Jacobsson A, Neuman E, Thoresson G (1986) The viviparous blenny as an indicator of environmental effects of harmful substances. Ambio 15:236–238

    Google Scholar 

  • Jagoe CH, Shaw-Allen PL, Brundage S (1996) Gill Na+/K+-ATPase activity in largemouth bass (Micropetrus salmoides) from three reservoirs with different levels of contamination. Aquat Toxicol 36:161–176

    Article  CAS  Google Scholar 

  • Kennedy SW, Jones SP (1994) Simultaneous measurement of cytochrome P4501a catalytic activity and total protein concentration with a fluorescence plate reader. Anal Biochem 222:217–223

    Article  CAS  Google Scholar 

  • Khoshnood Z, Khodabandeh S, Moghaddam MS, Khorjestan SM (2011) Histopathological and pathomorphological effects of mercuric chloride on the gills of Persian sturgeon, Acipenser persicus, fry. Int J Nat Res Mar Sci 1(1):23–32

    Google Scholar 

  • Kim MK, Zoh KD (2012) Fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health 45:335–343

    Article  Google Scholar 

  • Korashy HM, El-Kadi AOS (2004) Differential effects of mercury, lead and copper on the constitutive and inducible expression of aryl hydrocarbon receptor (AHR)-regulated genes in cultured hepatoma Hepa 1c1c7 cells. Toxicology 201:153–172

    Article  CAS  Google Scholar 

  • Krieg RC, Dong Y, Schwamborn K, Knuechel R (2005) Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE. Biochem Biophys Methods 65:13–19

    Article  CAS  Google Scholar 

  • Larose C, Canuel R, Lucotte M, Di Giulio RT (2008) Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp Biochem Physiol C 147:139–149

    Google Scholar 

  • Larsson DGJ, Kinnberg K, Sturve J, Stephensen E, Sköm M, Förlin L (2002) Studies of masculinization, detoxification, and oxidative stress responses in guppies (Poecilia reticulata) exposed to effluent from a pulp mill. Ecotoxicol Environ Saf 52:13–20

    Article  Google Scholar 

  • Li S, Sheng L, Xu J, Tong H, Jiang H (2016) The induction of metallothioneins during pulsed cadmium exposure to Daphnia magna: recovery and trans-generational effect. Ecotoxicol Environ Safe 126:71–77

    Article  CAS  Google Scholar 

  • Liao CY, Zhou QF, Fu JJ, Shi JB, Yuan CG, Jiang GB (2006) Interaction of methylmercury and selenium on the bioaccumulation and histopathology in medaka (Oryzias latipes). Inc Environ Toxicol 22:69–77

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2[−delta C(T)] method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Loumbourdis NS, Danscher G (2004) Autometallographic tracing of mercury in frog liver. Environ Pollut 129:299–304

    Article  CAS  Google Scholar 

  • Lyons BP, Bignell J, Stentiford GD, Feist SW (2004) The viviparous blenny (Zoarces viviparus) as a bioindicator of contaminant exposure: application of biomarkers of apoptosis and DNA damage. Mar Environ Res 58:757–761

    Article  CAS  Google Scholar 

  • Mani R, Meena B, Valivittan K (2014) Metallothionein induction on exposure to cadmium in marine catfish Arius arius. Int J Biol Pharm Res 5(4):293–300

    Google Scholar 

  • Martinez-Gómez C, Fernández B, Benedicto J, Valdés J, Campillo JA, León VM, Vethaak AD (2012) Health status of red mullets from polluted areas of the Spanish Mediterranean coast. With special reference to Portmán (SE Spain). Mar Environ Res 77:50–59

    Article  Google Scholar 

  • Meinelt T, Kruger R, Pietrock M, Osten R, Steinberg C (1997) Mercury pollution and macrophage centres in pike (Esox lucius) tissues. Environ Sci Pollut Res 4(1):32–36

    Article  CAS  Google Scholar 

  • Mela M, Neto FF, Yamamoto FY, Almeida R, Grotzner SR, Ventura DF, De Oliveira Ribeiro CA (2014) Mercury distribution in target organs and biochemical responses after subchronic and trophic exposure to neotropical fish Hoplias malabaricus. Fish Physiol Biochem 40:245–256

    Article  CAS  Google Scholar 

  • Mela M, Randi MA, Ventura DF, Carvalho CE, Pelletier E, Oliveira Ribeiro CA (2007) Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotoxicol Environ Saf 68:426–435

    Article  CAS  Google Scholar 

  • Messaoudi I, Barhoumi S, Said K, Kerken A (2009) Study on the sensitivity to cadmium of marine fish Salaria basilisca (Pisces: Blennidae). J Environ Sci 21:1620–1624

    Article  CAS  Google Scholar 

  • Mieiro CL, Dolbeth M, Marques TA, Duarte AC, Pereira ME, Pacheco M (2014) Mercury accumulation and tissue-specific antioxidant efficiency in the wild European sea bass (Dicentrarchus labrax) with emphasis on seasonality. Environ Sci Pollut Res 21(18):10638–10651

    Article  CAS  Google Scholar 

  • Modesto KA, Martinez CBR (2010) Roundup (R) causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299

    Article  CAS  Google Scholar 

  • Monteiro DA, Rantin FT, Kalinin AL (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxa˜, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology 19:105–123

    Article  CAS  Google Scholar 

  • Morovvati H, Nikpour Y, Zolgharneine H, Ronagh M, Abdi R, Roshan A (2012) Histological changes in the liver of reared spotted scat (Scatophagus argus L.) after exposure to mercury. Comp Clin Pathol 21:745–753

    Article  CAS  Google Scholar 

  • Nam DH, Adams DH, Reyier EA, Basu N (2011) Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. Environ Monit Assess 176:549–559

    Article  CAS  Google Scholar 

  • Noaksson E, Tjarnlund U, Ericson G, Balk L (1998) Biological effects on viviparous blenny exposed to chrysene and held in synthetic as well as in natural brackish water. Mar Environ Res 46(1–5):81–85

    Article  CAS  Google Scholar 

  • Oliveira Ribeiro CA, Guimarães JR, Pffeiffer WC (1996) Accumulation and distribution of inorganic mercury in a tropical fish (Trichomycterus zonatus). Ecotoxicol Environ Saf 34:190–195

    Article  Google Scholar 

  • Oliveira Ribeiro CA, Schatzmann M, Silva de Assis HC, Silva PH, Pelletier E (2002) Evaluation of tributyltin subchronic effects in tropical freshwater fish (Astyanax bimaculatus, Linnaeus, 1758). Ecotoxicol Environ Saf 51:61–167

    Article  Google Scholar 

  • Olsvik A, Lindgren M, Maage A (2013) Mercury contamination in deep-water fish: transcriptional responses in tusk (Brosme brosme) from a fjord gradient Pål. Aquat Toxicol 144(145):172–185

    Article  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Cm Med 70:158–169

    CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman R, Friedl, HR, Leaner J, Mason R, Mukherjee A, Stracher G, Streets D, Telmer K (2009) Global mercury emissions to the atmosphere from natural and anthropogenic sources. In: Mercury fate and transport in the global atmosphere. Springer US, New York, pp 1–47

  • Poopal RK, Ramesh M, Dinesh B (2013) Short-term mercury exposure on Na+/K+-ATPase activity and ionoregulation in gill and brain of an Indian major carp, Cirrhinus mrigala. J Trace Elem Med Bio 27:70–75

    Article  CAS  Google Scholar 

  • Risso-de Faverney C, Lafaurie M, Girard JP, Rahmani R (2000) Effects of heavy metals and 3-methylcholanthrene on expression and induction of CYP1A1 and metallothionein levels in trout (Oncorhynchus mykiss) hepatocyte cultures. Environ Toxicol Chem 19:2239–2248

    Article  Google Scholar 

  • Sassi A, Darias MJ, Said K, Messaoudi I, Gisbert E (2013) Cadmium exposure affects the expression of genes involved in skeletogenesis and stress response in gilthead sea bream larvae. Fish Physiol Biochem 39:649–659

    Article  CAS  Google Scholar 

  • Schladot JD, Backhaus F, Ostapczuk P, Emons H (1997) Eel-pout (Zoarces viviparus) as a marine bioindicator. Chemosphere 34:2133–2142

    Article  CAS  Google Scholar 

  • Smith JD (2012) A comparison of mercury localization, speciation, and histology in multiple fish species from Caddo lake, a fresh water wetland. University of north Texas. Thesis

  • Traven L, Mićović V, Lušić DV, Smital T (2013) The responses of the hepatosomatic index (HSI). 7 ethoxyresorufin-O-deethylase (EROD) activity and glutathione-S-transferase (GST) activity in sea bass (Dicentrarchus labrax. Linnaeus 1758) caged at a polluted site: implications for their use in environmental risk assessment. Environ Monit Assess 185:9009–9018

    Article  CAS  Google Scholar 

  • Viarengo A, Bettella E, Fabbri R, Burlando B, Lafaurie M (1997) Heavy metal inhibition of EROD activity in liver microsomes from the bass Dicentrarchus labrax exposed to organic xenobiotics: role of GSH in the reduction of heavy metal effects. Mar Environ Res 44:1–11

    Article  CAS  Google Scholar 

  • Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L (2009) Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior. Chemosphere 76(10):1416–1427

    Article  CAS  Google Scholar 

  • Wobeser G (1975) Acute toxicity of methyl mercury chloride and mercuric chloride for rainbow trout (Salmo gairdneri) fry and fingerlings. J Fish Res Board Can 32:2005–2013

    Article  CAS  Google Scholar 

  • Woods AE, Ellis RC (1994) A complete reference. Churchill Livingstone, New York

    Google Scholar 

  • Zhen H, Wen M, Yang Y, Can Z, Hui G, Li X, Deli L (2014) Toxic effects of HgCl2 on activities of SOD, AChE and relative expression of SOD, AChE, CYP1A1 of zebrafish. Ecotoxicology 23(10):1842–1845

    Article  CAS  Google Scholar 

  • Zimmerli S, Bernet D, Burkhardt-Holm P, Schmidt-Posthaus H, Vonlanthen P, Wahli T, Segner H (2007) Assessment of fish health status in four Swiss rivers showing a decline of brown trout catches. Aquat Sci 69:11–25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research has been partially financed by the BIOLIVAL Laboratory, Higher Institute of Biotechnology, Monastir, Tunisia. The authors thank for the help of all the staff of the National Institute of Science and Technology of the Sea (Monastir/Tunisia). A special thanks to Dr. Robert Mandiki, Steven Joosen, Marie-Claire Forget and Brigitte Moreau for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine Marchand.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naïja, A., Marchand, J., Kestemont, P. et al. Mercury accumulation and its effects on molecular, physiological, and histopathological responses in the peacock blenny Salaria pavo . Environ Sci Pollut Res 23, 22099–22115 (2016). https://doi.org/10.1007/s11356-016-7401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7401-y

Keywords

Navigation