Skip to main content

Advertisement

Log in

Oribatid Mite Communities on Lichens in Heavily Contaminated Post-Smelting Dumps

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study, we examined oribatid fauna of strongly contaminated post-smelting dumps (southern Poland) that exist in the substrate and are associated with the most frequent lichen, Cladonia rei. Due to artificial origin of the substrate and the extremely high contamination with heavy metals, the studied dumps are unique in Europe in terms of unfavourable life conditions. In total, 2,936 specimens of Oribatida, representing 50 oribatid species, were sampled on 10 dumps and a reference site. Thalli of C. rei act as an island for soil oribatid mites on extremely contaminated post-smelting dumps. Both abundance and species richness of oribatid fauna collected from C. rei thalli were significantly greater than those recorded in the dump’s substrate. The pool of oribatid species that was able to persist in extremely high doses of heavy metals was comparatively broad. However, only one species, Tectocepheus velatus, was able to achieve high abundances on all dumps. Three different responses of species (tolerant, sensitive, and indifferent) to heavy-metal contamination were recognised. Redundancy analysis indicated that highly increased levels of heavy metals, as well as K content, C/N ratio, and pH value, were the main factors that influence the composition and distribution of species. The concentrations of heavy metals (both essential elements (zinc) as well as xenobiotics (lead, cadmium) in T. velatus from the most contaminated dumps were not increased compared with those observed in moderately contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberti G, Seniczak A, Seniczak S (2003) The digestive system and fat body of an early-derivative oribatid mite, Archegozetes longisetosus Aoki (Acari: Oribatida, Thrypochthoniidae). Acarologia 43:149–219

    Google Scholar 

  • Andrés P, Mateos E (2006) Soil mesofaunal responses to post-mining restoration treatments. Appl Soil Ecol 33:67–78

    Article  Google Scholar 

  • Babenko AB (1980) Some regularities in formation of the complex of soil microarthropods on the dumps of open rock mines. Zool Zh 69:43–54

    Google Scholar 

  • Bačkor M, Fahselt D (2004) Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ontario, Canada). Environ Exp Bot 52:149–159

    Article  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53:214–222

    Article  Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin

    Google Scholar 

  • Basile A, Sorbo S, Aprile G, Conte B, Castaldo Cobianchi R (2008) Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ Pollut 151:401–407

    Article  CAS  Google Scholar 

  • Beckmann M (1988) Die Entwicklung der Bodenmesofauna eines Ruderal-Ökosystems und ihre Beeinflussung durch Rekultivierung: I. Oribatiden (Acari: Oribatei). Pedobiologia 31:391–408

    Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423

    Article  Google Scholar 

  • Behan-Pelletier VM, Walter DE (2000) Biodiversity of oribatid mites (Acari: Oribatida) in tree canopies and litter. In: Coleman DC, Hendrix PF (eds) Invertebrates as webmasters in ecosystems. CAB International, pp 187–202

  • Behan-Pelletier VM, St John MG, Winchester NN (2008) Canopy Oribatida: tree specific or microhabitat specific? Eur J Soil Biol 44:220–224

    Article  Google Scholar 

  • Bengtsson G, Rundgren S (1984) Ground living invertebrates in metal polluted forest soils. Ambio 13:29–33

    CAS  Google Scholar 

  • Bengtsson G, Tranvik L (1989) Critical metal concentrations for forest soil invertebrates. Water Air Soil Pollut 47:381–417

    Article  CAS  Google Scholar 

  • Bengtsson G, Hedlund K, Rundgren S (1994) Food- and density-dependent dispersal: evidence from a soil collembolan. J Anim Ecol 63:513–520

    Article  Google Scholar 

  • Bielska I (1995) Mining dump and electrical power plant Oribatida. In: Kropczyńska D, Boczek J, Tomczyk A (eds) The acari physiological and ecological aspects of acari-host relationships. Oficyna Dabor, Warsaw, pp 173–182

    Google Scholar 

  • Bielska I, Paszewska H (1995) Communities of moss mites (Acarida, Oribatida) on recultivated ash dumps from power plants. Pol Ecol Stud 21:263–275

    Google Scholar 

  • Byazrov LG, Melekhina EN (1992) Oribatid mites in lichen consortiums of Northern Scandinavia (based on the example of Varanger-fjorden). Biull Mosk Ova Ispyt Prir (Biol) 97:73–79

    Google Scholar 

  • Caruso T, Migliorini M, Bucci C, Bargagli R (2009) Spatial patterns and autocorrelation in the response of microarthropods to soil pollutants: the example of oribatid mites in an abandoned mining and smelting area. Environ Pollut 157:2939–2948

    Article  CAS  Google Scholar 

  • Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites as related to biological complexity. Exp Appl Acarol 40:1–25

    Article  Google Scholar 

  • Colloff MJ (1988) Species associations of oribatid mites in lichens on the Island of Ailsa Craig, Firth of Clyde (Acari: Cryptostigmata). J Nat Hist 22:1111–1119

    Article  Google Scholar 

  • Cuny D, Denayer FO, de Foucault B, Schumacker R, Colein P, Van Haluwyn C (2004) Patterns of metal soil contamination and changes in terrestrial cryptogamic communities. Environ Pollut 129:289–297

    Article  CAS  Google Scholar 

  • Davis BNK (1963) A study of the micro-arthropod communities in mineral soils near Corby, Northants. J Anim Ecol 32:49–71

    Article  Google Scholar 

  • Dolnik C, Beck A, Zarabska D (2010) Distinction of Cladonia rei and C. subulata based on molecular, chemical and morphological characteristics. Lichenologist 42:373–386

    Article  Google Scholar 

  • Dunger W (1968) Die Entwicklung der Bodenfauna auf rekultivierten Kippen und Halden des Braunkohletagebaus. Abh Ber Naturkundemus Leipzig 43:1–256

    Google Scholar 

  • Erdmann G, Floren A, Linsenmair KE, Scheu S, Maraun M (2006) Little effect of forest age on oribatid mites on the bark of trees. Pedobiologia 50:433–441

    Article  Google Scholar 

  • Fischer BM, Schatz H, Maraun M (2010) Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem. Exp Appl Acarol 52:221–237

    Article  Google Scholar 

  • Fröberg L, Solhøy T, Baur A, Baur B (2003) Lichen specificity of oribatid mites (Acari: Oribatida) on limestone walls in the Great Alvar of Oland, Sweden. Entomol Tidskr 124:77–82

    Google Scholar 

  • Giełwanowska I, Olech M (2012) New ultrastructural and physiological features of the thallus in Antarctic lichens. Acta Biol Crac Ser Bot 54:40–52

    Google Scholar 

  • Gilbert O (1990) The lichen flora of urban wasteland. Lichenologist 22:87–101

    Article  Google Scholar 

  • Gjelstrup P, Søchting U (1979) Cryptostigmatid mites (Acarina) associated with Ramalina siliquosa (Lichenes) on Bornholm in the Baltic. Pedobiologia 19:237–245

    Google Scholar 

  • Gjelstrup P, Søchting U (1984) Oribatid mites (Acarina) dominant in some lichen and moss species of maritime rocks on Bornholm in the Baltic. In: Griffiths DA, Bowman CE (eds) Acarology VI (1). Ellis Horwood, Chichester, pp 528–533

    Google Scholar 

  • Hågvar S, Abrahamsen G (1990) Microarthropods and Enchytraeidae (Oligochaeta) in naturally lead-contaminated soils: a gradient study. Environ Entomol 19:1263–1277

    Google Scholar 

  • Hajdúk J, Lisická E (1999) Cladonia rei (lichenizované askomycéty) na stanovištiach kontaminovaných imisiami z Kovohút Krompachy (SV Slovensko). Bull Slov Bot Spoločn Bratislava 21:49–51

    Google Scholar 

  • Heikens A, Peijinenburg WJGM, Hendriks AJ (2001) Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut 113:385–393

    Article  CAS  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hubert J (2001) Oribatid mites (Acari: Oribatida) on reclaimed and unreclaimed wasteland near Chvaletice (Czech Republic). Acta Soc Zool Bohem 65:5–16

    Google Scholar 

  • James PW (2009) Cladonia P. Browne (1756). In: Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, et al. (eds) The lichens of Great Britain and Ireland. The British Lichen Society, London, pp 309–338

  • Janssen MPM, Hogervorst RF (1993) Metal accumulation in soil arthropods in relation to micro-nutrients. Environ Pollut 79:181–189

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace element in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200

    Article  Google Scholar 

  • Khalil MA, Janssens TKS, Berg MP, Van Straalen NM (2009) Identification of metal-responsive oribatid mites in a comparative survey of polluted soils. Pedobiologia 52:207–221

    Article  CAS  Google Scholar 

  • Khan AG, Kuek C, Chaundhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    Article  CAS  Google Scholar 

  • Lebrun P, Van Straalen NM (1995) Oribatid mites: prospects of their use in ecotoxicology. Exp Appl Acarol 19:361–380

    Article  Google Scholar 

  • Lindo Z, Winchester NN (2006) A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western red cedar trees. Pedobiologia 50:31–41

    Article  Google Scholar 

  • Lityński T, Jurkowska H, Gorlach E (1976) Chemical and agricultural analysis [in Polish]. PWN, Warsaw

    Google Scholar 

  • Ludwig M, Kratzmann M, Alberti G (1991) Accumulation of heavy metals in two oribatid mites. In: Dusbábek F, Bukva V (eds) Modern acarology. SPB Academic Publishing, Prague, pp 431–437

    Google Scholar 

  • Ludwig M, Kratzmann M, Alberti G (1992) The influence of some heavy metals on Steganacarus magnus (Acari, Oribatida). Z Angew Zool 79:455–467

    Google Scholar 

  • Luxton M (1982) The ecology of some soil mites from coal shale tips. J Appl Ecol 19:427–442

    Article  Google Scholar 

  • Maciak F (1996) The protection and restoration of the environment [in Polish]. SGGW, Warsaw

  • Madej G, Skubała P (1996) Communities of mites (Acari) on old galena-calamine mining wastelands at Galman, Poland. Pedobiologia 40:311–327

    Google Scholar 

  • Materna J (2000) Oribatid communities (Acari: Oribatida) inhabiting saxicolous mosses and lichens in the Krkonose Mts. (Czech Republic). Pedobiologia 44:40–62

    Article  Google Scholar 

  • Mowl JL, Gadd GM (1984) Cadmium uptake by Aureobasidium pullulans. J Gen Microbiol 130:279–284

    Google Scholar 

  • Murvanidze M, Mumladze L, Arabuli T, Kvavadze E (2013) Oribatid mite colonization of sand and manganese tailing sites. Acarologia 53:203–215

    Article  Google Scholar 

  • Naeth MA, Wilkinson SR (2008) Lichens as biomonitors of air quality around a diamond mine, Northwest Territories, Canada. J Environ Qual 37:1675–1684

    Article  CAS  Google Scholar 

  • Nash TH III (2008) Lichen biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Olmez I, Gulovali MC, Gordon GE (1985) Trace element concentrations in lichens near a coal-fired power plant. Atmos Environ 19:1663–1669

    Article  CAS  Google Scholar 

  • Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. British Lichen Society, London

    Google Scholar 

  • Ostrowska A, Gawliński A, Szczubiałka Z (1991) Methods of analysis and evaluation of soil and plants [in Polish]. IOŚ, Warsaw

    Google Scholar 

  • Osyczka P, Rola K (2013a) Cladonia lichens as the most effective and essential pioneers in strongly contaminated slag dumps. Central Eur J Biol 8:876–887

    Article  Google Scholar 

  • Osyczka P, Rola K (2013b) Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate. Environ Sci Pollut Res 20:5076–5084

    Article  CAS  Google Scholar 

  • Pawlik-Skowrońska B, Bačkor M (2011) Zn/Pb-tolerant lichens with greater content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environ Exp Bot 72:64–70

    Article  Google Scholar 

  • Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601

    Article  Google Scholar 

  • Puziewicz J, Zainoun K, Bril H (2007) Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland. Can Mineral 45:1189–1200

    Article  CAS  Google Scholar 

  • Pyta H, Rosik-Dulewska C, Czaplinka M (2009) Speciation of ambient mercury in the Upper Silesia region, Poland. Water Air Soil Pollut 197:233–240

    Article  CAS  Google Scholar 

  • Rajakaruna N, Harris TB, Clayden S, Dibble A, Olday FS (2011) Lichens of Callahan Mine, a copper and zinc-enriched superfund site in Brooksville, Maine, USA. Rhodora 113:1–31

    Article  Google Scholar 

  • Regulation of the Minister of Environment dated 9 September 2002. Official Gazette No. 165, Pos. 1359th

  • Rola K, Osyczka P (2014) Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient. Environ Monit Assess. doi:10.1007/s10661-014-3827-1

  • Roth M (1992) Metals in invertebrate animals of a forest ecosystem. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis, Boca Raton, pp 299–328

    Google Scholar 

  • Schatz H (1983) Catalogus Fauna Austriae, Teil IXi U.—Ordn.: Oribatei, Hornmilben. Ősterreichischen, Akademie der Wissenschaften, Vienna, Austria

  • Seyd EL, Seaward MRD (1984) The association of orbatid mites with lichens. Zool J Linn Soc Lond 80:369–420

    Article  Google Scholar 

  • Sidorchuk EA (2009) New data on the fauna of oribatid mites (Acari, Oribatida) from the polar Urals. Entomol Rev 89:554–563

    Article  Google Scholar 

  • Siepel H (1995) Are some mites more ecologically exposed to pollution with lead than others? Exp Appl Acarol 19:391–398

    Article  Google Scholar 

  • Siepel H, de Ruiter-Dijkman EM (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497

    Article  Google Scholar 

  • Skubała P (1995) Moss mites (Acarina: Oribatida) on industrial dumps of different ages. Pedobiologia 39:170–184

    Google Scholar 

  • Skubała P (1996) Colonization of a dolomitic dump by oribatid mites (Acari, Oribatida). Pedobiologia 43:145–159

    Google Scholar 

  • Skubała P (1998) Oribatid mite communities (Acari, Oribatida) on postindustrial dumps of different kinds. II. Community organization. Fragm Faun 41:193–207

    Article  Google Scholar 

  • Skubała P (1999) Colonization of a dolomitic dump by oribatid mites (Acari, Oribatida). Pedobiologia 43:145–159

    Google Scholar 

  • Skubała P (2004) Colonization and development of oribatid mite communities (Acari: Oribatida) on post-industrial dumps. Wyd Uniwersytetu Śląskiego, Katowice, Poland

  • Skubała K (2011) Vascular flora of sites contaminated with heavy metals on the example of two post-industrial spoil heaps connected with manufacturing of zinc and lead products in Upper Silesia. Arch Environ Prot 37:55–74

    Google Scholar 

  • Skubała P, Kafel A (2004) Oribatid mite communities and metal bioaccumulation in oribatid species (Acari, Oribatida) along the heavy metal gradient in forest ecosystems. Environ Pollut 132:51–60

    Article  Google Scholar 

  • Skubała P, Zaleski T (2012) Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida): gradient study in meadow ecosystems. Sci Total Environ 414:364–372

    Article  Google Scholar 

  • Skubała P, Dziuba S, Stodółka A (1998) Acari and Collembola in the “Żabie Doły” protected area or how nature struggle with industry. Zesz Nauk ATR, Ochrona Środowiska, Bydgoszcz Ochrona Srodowiska 2(214):251–257

  • Smrž J, Starý J (1995) Acarina: Oribatida. Folia Fac Sci Nat Univ Masarykianae Brunensis. Biologia 92:79–85

  • Søchting U, Gjelstrup P (1985) Lichen communities and the associated fauna on a rocky sea shore on Bornholm in the Baltic. Holarct Ecol 8:66–75

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. Freeman, New York

    Google Scholar 

  • Steiner WA (1995) Influence of air pollution on moss-dwelling animals. 3. Terrestrial fauna, with emphasis on Oribatida and Collembola. Acarologia 36:149–173

    Google Scholar 

  • Strojan CL (1978) The impact of zinc smelter emissions on forest litter arthropods. Oikos 31:41–46

    Article  Google Scholar 

  • Subias LS (2004) Listado sistemático, sinonímico y biogeográfico de los Ácaros Oribátidos (Acariformes, Oribatida) del mundo (1758-2002). Graellsia 2004, 60 (in Spanish with English summary). Actualizado en Febrero de 2012. http://www.ucm.es/info/zoo/Artropodos/Catalogo.pdf. Accessed 30 May 2012

  • Syrek M, Kukwa M (2008) Taxonomy of the lichen Cladonia rei and its status in Poland. Biologia 63:493–497

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows User`s guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY

  • Tordoff GM, Baker AJ, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Article  CAS  Google Scholar 

  • Tranvik L, Eijsackers H (1989) On the advantages of Folsomia fimetarioides over Isotomiella minor (Collembola) in a metal-polluted soil. Oecologia 80:195–200

    Google Scholar 

  • Travé J (1963) Écologie et biologie des oribates (Acariens) saxicoles et arboricoles. Vie Millieu 14(Suppl):1–267

    Google Scholar 

  • Trevors JT, Stratton GW, Gadd GM (1986) Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can J Microbiol 32:447–464

    Article  CAS  Google Scholar 

  • Van Straalen NM, Van Wensem J (1986) Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environ Pollut 42:209–221

    Article  Google Scholar 

  • Van Straalen NM, Schobben JHM, De Goede RGM (1989) Population consequences of cadmium toxicity in soil microarthropods. Ecotoxicol Environ Saf 17:190–204

    Article  Google Scholar 

  • Van Straalen NM, Butovsky RO, Pokarzhevskii AD, Zaitsev AS, Verhoef SC (2001) Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45:451–466

    Article  Google Scholar 

  • Weigmann G (1995) Heavy metal burdens in forest soil fauna at polluted sites near Berlin. Acta Zool Fenn 196:369–370

    Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). Die tierwelt Deutschlands 76 [in German]. Teil. Goecke and Evers, Keltern

  • World Bank Group (1999) Pollution prevention and abatement handbook 1998. Toward Cleaner Production, The International Bank for Reconstruction and Development/The World Bank, Washington, DC

  • Zaitsev AS, Krivolutskij DA (1999) Responses of oribatid mite communities to the impact of a metallurgical plant in the Netherlands (Ijmuiden). In: Butovsky RO, Van Straalen NM (eds) Pollution-induced changes in soil invertebrate food-webs. Vrije Universiteit, Amsterdam, pp 43–50

  • Zaitsev AS, Van Straalen NM (2001) Species diversity and metal accumulation in oribatid mites (Acari, Oribatida) of forests affected by a metallurgical plant. Pedobiologia 45:467–479

    Article  CAS  Google Scholar 

  • Żbikowska-Zdun K (1988) Species diversity and biomass of communities of moss mites (Oribatida, Acarida) of three different biotopes in the Upper Silesian Region. Acta Biol Siles 10:46–61

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Magdalena Podgajny (Agricultural University, Kraków, Poland) for the organisational support in carrying out the chemical analyses of the substrate matter. The project was partially financially supported by the National Science Centre (Decision No. DEC-2012/05/N/NZ8/00842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Skubała.

Appendix

Appendix

See Table 6.

Table 6 Alphabetical list of oribatid species recorded on 10 post-smelting dumps and the reference site

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skubała, P., Rola, K., Osyczka, P. et al. Oribatid Mite Communities on Lichens in Heavily Contaminated Post-Smelting Dumps. Arch Environ Contam Toxicol 67, 578–592 (2014). https://doi.org/10.1007/s00244-014-0066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0066-y

Keywords

Navigation