Skip to main content

Advertisement

Log in

Toxic Element Concentrations in the Razorbill Alca torda (Charadriiformes, Alcidae) in Portugal

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The present study provides the first data on inorganic element levels (As, Cd, Co, Cr, Cu, Hg, Mn, Pb, Se, and Zn) in juvenile, immature, and adult razorbills (Alca torda) collected along the central coast of Portugal. Element concentrations were assessed by ICP-MS in kidney, liver, muscle, and feathers of 28 razorbills, including 4 juveniles, 17 subadults, and 7 adults. The effect of age and tissue on element accumulation was also assessed. The detected levels in razorbills may indicate a possible contamination risk by Hg and Cr. With respect to bird tissues, higher accumulation of Se and Cd was detected in kidney, Zn and Pb in feathers, and As and Mn in liver. Age was found to affect the accumulation of Cd, Cr, Cu, Hg, and Mn, juveniles presenting higher levels of Cu and Mn than older individuals. In razorbill kidney, Zn–Hg constituted the most significant relationship among metal concentrations. Liver presented the highest number of significant relationships (mostly involving Zn and Co). With regard to feathers, the most significant relationships involved Se, Zn, Cr and Cu concentrations. Positive linear relationships were detected among kidney, liver, and muscle, with emphasis on relationships involving Se and Hg, which may be indicative of similar accumulation/regulation mechanisms in those organs. Element concentrations are discussed in view of possible detoxification mechanisms in seabirds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett RT, Anker-Nilssen T, Krasnov YV (1997) Can Norwegian and Russian razorbills Alca torda be identified by their measurements? Mar Ornithol 25:5–8

    Google Scholar 

  • Braune BM, Gaskin DE (1987) A mercury budget for the Bonaparte’s Gull during autumn moult. Ornis Scand 18:244–250. doi:10.2307/3676891

    Article  Google Scholar 

  • Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Toxicol 5:203–311

    Google Scholar 

  • Burger J, Gochfeld M (1992) Trace element distribution in growing feathers: additional excretion in feather sheaths. Arch Environ Contam Toxicol 23:105–108

    CAS  Google Scholar 

  • Burger J, Gochfeld M (2000) Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci Tot Environ 257:37–52. doi:10.1016/S0048-9697(00)00496-4

    Article  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Pinxten R, Blust R, Eens M (2003) Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ Pollut 124:429–436. doi:10.1016/S0269-7491(03)00044-7

    Article  CAS  Google Scholar 

  • Debacker V, Jauniaux T, Coignoul F, Bouquegneau JM (2000) Heavy metals contamination and body condition of wintering guillemots (Uria aalge) at the Belgian coast from 1993 to 1998. Environ Res 84:310–317. doi:10.1006/enrs.2000.4087

    Article  CAS  Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1996) Handbook of the birds of the world, vol 3. Hoatzin to Auks. Lynx Editions, Barcelona, Spain

    Google Scholar 

  • Denneman WD, Douben PET (1993) Trace metals in primary feathers of the barn owl (Tyto alba guttattus) in the Netherlands. Environ Pollut 82:301–310. doi:10.1016/0269-7491(93)90133-9

    Article  CAS  Google Scholar 

  • Dietz R, Riget F, Johansen P (1996) Lead, cadmium, mercury and selenium in Greenland marine animals. Sci Total Environ 186:67–93. doi:10.1016/0048-9697(96)05086-3

    Article  CAS  Google Scholar 

  • Eisler R (1985) Cadmium hazards to fish, wildlife, and invertebrates: a synoptic review. Biological report no. 1.2. U.S. Fish and Wildlife Service, Washington, DC

  • Eisler R (1986) Chromium hazards to fish, wildlife and invertebrates: a synoptic review. Biological report 1.6. U.S. Fish and Wildlife Service, Washington, DC

  • Eisler R (1987) Mercury hazards to fish, wildlife and invertebrates: a synoptic review. Biological report 1.1. U.S. Fish and Wildlife Service, Washington, DC

  • Eisler R (1993) Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. Contaminant Hazard Reviews Report 26. Biological Report 10. U.S. Fish and Wildlife Service, Washington, DC

  • Elliot JE, Scheuhammer AM, Leighton FA, Pearce PA (1992) Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds. Arch Environ Contam Toxicol 22:63–73. doi:10.1007/BF00213303

    Article  Google Scholar 

  • Furness RW, Camphuysen KCJ (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737. doi:10.1006/jmsc.1997.0243

    Article  Google Scholar 

  • Furness RW, Greenwood JJD, Jarvis PJ (1993) Can birds be used to monitor the environment? In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman and Hall, London, pp 86–143

    Google Scholar 

  • Hahn E, Hahn K, Stoeppler M (1993) Bird feathers as bioindicators in areas of the German Environmental Specimen Bank—bioaccumulation of mercury in food chains and exogenous deposition of atmospheric pollution with lead and cadmium. Sci Tot Environ 139/140:259–270. doi:10.1016/0048-9697(93)90025-2

    Article  Google Scholar 

  • Heinz GH (1996) Selenium in birds. In: Beyer WN, Heinz GH, Redmom-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissues concentrations. CRC Press, Boca Raton, FL, pp 447–458

    Google Scholar 

  • Hipfner JM, Chapdelaine G (2002) Razorbill (Alca torda). In: Poole A, Gill F (eds) The birds of North America, No. 635. The Birds of North America, Philadelphia, PA

    Google Scholar 

  • Honda K, Min BY, Talsukawa R (1986) Distribution of heavy metals and their age-related changes in the eastern great white egret Egretta alba modesta in Korea. Arch Environ Contam Toxicol 15:185–197. doi:10.1007/BF01059967

    Article  CAS  Google Scholar 

  • Huettmann F, Diamond AW, Dalzell B, Macintosh K (2005) Winter distribution, ecology and movements of razorbills Alca torda and other auks in the outer Bay of Fundy, Atlantic Canada. Mar Ornithol 33:161–171

    Google Scholar 

  • Hylland K (2006) Biological effects in the management of chemicals in the marine environment. Mar Pollut Bull 53:614–619. doi:10.1016/j.marpolbul.2006.08.010

    Article  CAS  Google Scholar 

  • ICES (2003) Seabirds as monitors of the marine environment. Tasker ML, Furness RW (eds) ICES Cooperative Research Report No. 258. ICES, Copenhagen

  • Kim EY, Goto R, Tanabe S, Tanaka H, Tatsukawa R (1998) Distribution of 14 trace elements in tissues and organs of oceanic seabirds. Arch Environ Contam Toxicol 35:638–645. doi:10.1007/s002449900426

    Article  CAS  Google Scholar 

  • Kojadinovic J, Corre M, Cosson RP, Bustamante P (2007a) Trace elements in three marine birds breeding on Reunion Island (western Indian Ocean): Part 1—Factors influencing their bioaccumulation. Arch Environ Contam Toxicol 52:418–430. doi:10.1007/s00244-005-0225-2

    Article  CAS  Google Scholar 

  • Kojadinovic J, Bustamante P, Corre M, Cosson RP (2007b) Trace elements in three marine birds breeding on Reunion Island (western Indian Ocean): Part 2—Factors influencing their detoxification. Arch Environ Contam Toxicol 52:431–440. doi:10.1007/s00244-005-8225-9

    Article  CAS  Google Scholar 

  • Kubota R, Kunito T, Tanabe S (2001) Arsenic accumulation in the liver tissue of marine mammals. Environ Pollut 115:303–312. doi:10.1016/S0269-7491(01)00099-9

    Article  CAS  Google Scholar 

  • Kunito T, Kubota R, Fujihara J, Agusa T, Tanabe S (2008) Arsenic in marine mammals, seabirds, and sea turtles. Rev Environ Contam Toxicol 195:31–69. doi:10.1007/978-0-387-77030-7_2

    Article  CAS  Google Scholar 

  • Langston WJ, Chesman BS, Burt GR, Pope ND, McEnvoy J (2002) Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Mar Environ Res 53:263–293. doi:10.1016/S0141-1136(01)00113-1

    Article  CAS  Google Scholar 

  • Lavers JL, Jones IL, Diamond AW (2007) Natal and breeding dispersal of razorbills (Alca torda) in Eastern North America. Waterbirds 30:588–594

    Article  Google Scholar 

  • Mendes P, Eira C, Torres J, Soares AMVM, Melo P, Vingada J (2008) Toxic element concentration in the Atlantic gannet Morus bassanus (Pelecaniformes, Sulidae) in Portugal. Arch Environ Contam Toxicol. doi:10.1007/s00244-008-9134-5

  • Nam D-H, Anan Y, Ikemoto T, Okabe Y, Kim E-Y, Subramanian A, Saeki K, Tanabe S (2005) Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environ Pollut 134:503–514. doi:10.1016/j.envpol.2004.09.003

    Article  CAS  Google Scholar 

  • Neff JM (1997) Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16:917–927. doi:10.1897/1551-5028(1997)016<0917:EOAITM>2.3.CO;2

    Article  CAS  Google Scholar 

  • Nettleship DN, Birkhead TR (1985) The Atlantic Alcidae. Academic Press, London

    Google Scholar 

  • Niecke M, Heid M, Kruger A (1999) Correlations between melanin pigmentation and element concentration in feathers of white-tailed eagles (Haliaeetus albicilla). J Ornithol 140:355–362. doi:10.1007/BF01651032

    Article  Google Scholar 

  • NRC (National Research Council) (1983) Risk assessment in the federal government. Managing the process. National Academy Press, Washington, DC

    Google Scholar 

  • Outridge PM, Scheuhammer AM (1993) Bioaccumulation and toxicology of chromium: implications for wildlife. Rev Environ Contam Toxicol 130:31–77

    CAS  Google Scholar 

  • Pérez-López MP, Cid F, Oropesa L, Fidalgo LE, Beceiro AL, Soler F (2006) Heavy metal and arsenic content in seabirds affected by the Prestige oil spill on the Galician coast (NW Spain). Sci Tot Environ 359:209–220. doi:10.1016/j.scitotenv.2005.04.006

    Article  Google Scholar 

  • Savinov VM, Gabrielsen GW, Savinova TN (2003) Cadmium, zinc, copper, arsenic, selenium and mercury in seabirds from the Barents Sea: levels, inter-specific and geographical differences. Sci Tot Environ 306:133–58. doi:10.1016/S0048-9697(02)00489-8

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ Pollut 46:263–295. doi:10.1016/0269-7491(87)90173-4

    Article  CAS  Google Scholar 

  • Schneider R, Steinhagen-Schneider G, Drescher HE (1985) Organochlorines and heavy metals in seals and birds from the Weddell Sea. In: Seigfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp 652–655

    Google Scholar 

  • SEO/BirdLife (2003) Aves petroleadas. SEO/BirdLife, Conselleria de Medi Ambient (Govern de les Illes Balears) e Consellería de Medio Ambiente (Xunta de Galicia)

  • Stewart FM, Thompson DR, Furness RW, Harrison N (1994) Seasonal variation in heavy metal levels in tissues of Common Guillemots, Uria aalge from Northwest Scotland. Arch Environ Contam Toxicol 27:168–175. doi:10.1007/BF00214259

    Article  CAS  Google Scholar 

  • Stewart FM, Phillips RA, Bartle JA, Craig J, Shooter D (1999) Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar Ecol Prog Ser 178:295–305. doi:10.3354/meps178295

    Article  CAS  Google Scholar 

  • Thompson DR (1996) Mercury in birds and terrestrial mammals. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife. Interpreting tissue concentrations. CRC Press, Boca Raton, FL

    Google Scholar 

  • Thompson DR, Furness RW, Barrett RT (1992) Mercury concentrations in variation in heavy metal levels in tissue of common guillemots, seabirds from colonies in the Northeast Atlantic. Arch Environ Contam Toxicol 23:383–389. doi:10.1007/BF00216249

    Article  CAS  Google Scholar 

  • Upton AJ, Pickerell G, Heubeck M (2000) Seabird numbers and breeding success in Britain and Ireland. JNCC, Peterborough

    Google Scholar 

  • Walsh P (1990) The use of seabirds as monitors of heavy metals in the marine environment. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment, vol 10. CRC Press, Boca Raton, FL, pp 183–204

    Google Scholar 

  • Yamamoto Y, Kanesakti S, Kuramochi S, Miyazakiy N, Watanukiy Y, Naito Y (1996) Comparison of trace element concentrations in tissues of the chick and adult Adelie Penguins. Proc NIPR Symp Polar Biol 9:253–262

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by project HP 2005-0011 (ACIN) of the Secretaría de Estado de Educación, Universidades, Investigación y Desarrollo (SEID) and Conselho de Reitores das Universidades Portuguesas (CRUP), and by fellowship SFRH/BPD/27014/2006 provided by the Fundação para a Ciência e Tecnologia of the Portuguese MCTES. The authors wish to thank all personnel at the Serveis Científics i Tècnics of the University of Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Eira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, A.R., Eira, C., Torres, J. et al. Toxic Element Concentrations in the Razorbill Alca torda (Charadriiformes, Alcidae) in Portugal. Arch Environ Contam Toxicol 56, 588–595 (2009). https://doi.org/10.1007/s00244-008-9215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9215-5

Keywords

Navigation