Skip to main content
Log in

An Overview of the Adverse Effects of Heavy Metal Contamination on Fish Health

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Rapid industrialization results in the production of huge amounts of solid and/or liquid wastes, which is usually discharged into the nearby water bodies, leading to the damage of the important ecosystems and seafood products. Therefore, the present overview aims to highlight the issue of pollution of aquatic ecosystems and fish health. Heavy metals are widely used in every industrial application; therefore, they form the core group of pollutants of any industrial discharge. Some of the heavy metals such as Fe, Mn, Co, Ni, Cu, Zn and Cr are essential as they form the cofactor for many of the enzymes and also needed in metabolic activities. On the contrary, their exceeding amount is also detrimental to both animals and human beings. Based on the current review, it has been observed that to monitor the health of indicator organism (fish), battery of bioassays or biomarkers are required. In addition to this rationale of using the few selected parameters such as condition indices, bioaccumulation, blood biochemistry, marker enzymes of tissue damage, oxidative stress, genotoxicity and histopathology in describing, the aquatic pollution has also been emphasized. All these parameters are significantly affected by heavy metals and hence proved as useful tools in biomonitoring or toxicity assessment studies. Since fishes are consumed by large mass of population due to their high protein and polyunsaturated fatty acid content, human health is also under danger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gleick PH (1996) Water resources. In: Schneider SH (ed) Encyclopedia of climate and weather, vol 2. Oxford University Press, New York, pp 817–823

    Google Scholar 

  2. Pandey SN (2006) Accumulation of heavy metals (Cd, Cr, Ni, Cu, and Zn) in Raphanus sativus and Spinacea oleracea L. plants irrigated with industrial effluents. J Environ Biol 27:381–384

    CAS  PubMed  Google Scholar 

  3. Hawkes JS (1997) Heavy metals. J Chem Educ 74:1374

    Article  CAS  Google Scholar 

  4. Wittmann GTW (1979) Toxic metals. In: Förstner U, Wittmann GTW (eds) Metal pollution in the aquatic environment. Springer, Berlin, pp 3–70

    Google Scholar 

  5. Oldewage AA, Marx HM (2000) Bioaccumulation of chromium, copper and iron in the organs and tissues of Clarias gariepinus in the Olifants River, Kruger National Park. Water SA 26:569–582

    Google Scholar 

  6. Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters. Applied monitoring and impact assessment. Springer, New York

    Book  Google Scholar 

  7. Department of Water Affairs and Forestry (1993) South African water quality guidelines. Volume 1: Domestic use, 1st edn. Department of Water Affairs and Forestry, Pretoria

  8. Robinson J, Avenant-Oldewage A (1997) Chromium, copper, iron and manganese bioaccumulation in some organs and tissues of Oreochromis mossambicus from the lower Olifants River, inside the Kruger National Park. Water SA 23:387–403

    CAS  Google Scholar 

  9. Ganesan V, Hughes RM (1998) Application of an index of biological integrity to fish assemblages of the rivers Kahn and Kshipra (Madhya Pradesh). Fresh Water Biol 40:367–383

    Article  Google Scholar 

  10. Koca YB, Koca S, Yildiz S, Gurcu B, Osane E, Tuncbas O, Aksoy G (2005) Investigation of histopathological and cytogenetic effects on Lepomis gibbosus (pisces: perciformes) in the Cine stream (Aydin/Turkey) with determination of water pollution. Environ Toxicol 20:560–571

    Article  CAS  PubMed  Google Scholar 

  11. Koca S, Koca YB, Yildiz S, Gurcu B (2008) Genotoxic and histopathological effects of water pollution on two fish species, Barbus capito pectoralis and Chondrostoma nasus in the Buyuk Menderes River, Turkey. Biol Trace Elem Res 122:276–291

    Article  CAS  PubMed  Google Scholar 

  12. Abida B, Harikrishna S, Irfanulla K (2009) Analysis of heavy metals in water, sediments and fish samples of Madivala Lakes of Bangalore, Karnataka. Int J Chem Technol Res 1:245–249

    Google Scholar 

  13. Malik N, Biswas AK, Qureshi TA, Borana K, Virha R (2010) Bioaccumulation of heavy metals in fish tissues of a fresh water lake of Bhopal. Environ Monit Assess 160:267–276

    Article  CAS  PubMed  Google Scholar 

  14. Yildiz S, Gurcu B, Basimoglu YK, Koca S (2010) Histopathological and genotoxic effects of pollution on Anguilla anguilla in the Gediz River (Turkey). J Anim Vet Adv 9:2890–2899

    Article  CAS  Google Scholar 

  15. Nhiwatiwa T, Barson M, Harrison AP, Utete B, Cooper RG (2011) Metal concentrations in water, sediment and sharptooth catfish Clarias gariepinus from three peri-urban rivers in the upper Manyame catchment, Zimbabwe. Afr J Aquat Sci 36:243–252

    Article  CAS  Google Scholar 

  16. Ankur K, Siddiqui NA, Gautam A (2013) Assessment of heavy metals and their interrelationships with some physicochemical parameters in ecoefficient rivers of Himalayan Region. Environ Monit Assess 185:2553–2563

    Article  CAS  Google Scholar 

  17. Srivastava S, Srivastava A, Negi MPS, Tandon PK (2011) Evaluation of effect of drains on water quality of river Gomti in Lucknow city using multivariate statistical techniques. Int J Environ Sci 2:1

    CAS  Google Scholar 

  18. Javed M, Usmani N (2012) Uptake of heavy metals by Channa punctatus from sewage fed aquaculture pond of Panethi, Aligarh. Glob J Res Eng C 12:27–34

    Google Scholar 

  19. Javed M, Usmani N (2013) Haematological indices of Channa punctatus as an indicator of heavy metal pollution in wastewater aquaculture pond, Panethi, India. Afr J Biotechnol 12:520–525

    Article  CAS  Google Scholar 

  20. Javed M, Usmani N (2013) Investigation on accumulation of toxicants and health status of freshwater fish Channa punctatus, exposed to sugar mill effluent. Int J Zool Res 3:43–48

    Google Scholar 

  21. Javed M (2013) Effect of anthropogenic activities on water quality and fish fauna. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  22. Javed M, Usmani N (2012) Toxic effects of heavy metals (Cu, Ni, Fe Co, Mn, Cr, Zn) to the haematology of Mastacembelus armatus thriving in Harduaganj Reservoir, Aligarh, India. Glob J Med Res 12:59–64

    Google Scholar 

  23. Javed M, Usmani N (2013) Assessment of heavy metal (Cu, Ni, Fe Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus. SpringerPlus 2:1–13

    Article  CAS  Google Scholar 

  24. Javed M, Ahmad I, Usmani N, Ahmad M (2016) Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent. Ecotoxicol Environ Saf 127:163–169

    Article  CAS  PubMed  Google Scholar 

  25. Alabaster JS, Lloyd R (1980) Water quality criteria for freshwater fish. FAO and Butterworths, London

    Google Scholar 

  26. Nussey G (1998) Metal ecotoxicology of the upper Olifants River at selected localities and the effect of copper and zinc on fish blood physiology. Ph.D. thesis, Rand Afrikans University, South Africa

  27. Kennish L (1992) Toxicity of heavy metals: effects of Cr and Se on humans health. J Indian Public Health Educ 2:36–64

    Google Scholar 

  28. Connell BS, Cox M, Singer I (1984) Nickel and Chromium. In: Brunner F, Coburn JW (eds) Disorders of minerals metabolism. Academic Press, New York, pp 472–532

    Google Scholar 

  29. Goede RW, Barton BA (1990) Organismic indices and an autopsy-based assessments as indicators of health and condition in fish. Am Fish Soc Symp 8:93–108

    Google Scholar 

  30. Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recovery 6:75–86

    Article  CAS  Google Scholar 

  31. Eastwood S (2000) Effects of environmental metal contamination on the condition of Northeastern Ontario Yellow Perch (Perca flavescens). M.Sc. thesis, School of Graduate Studies, Department of Biology, Laurentian, University, Sudbury, ON

  32. El-Nemaki FA, Nema A, Ali MMZ, Olfat AR (2008) Impacts of different water resources on the ecological parameters and the quality of tilapia production at El-Abbassa fish farms in Egypt. In: 8th international symposium on tilapia in aquaculture, pp 491–512

  33. El-Serafy SS, Mohamed EZ, Nassr-Allah HAH, Mohamed HAEHO (2013) Effect of dietborne Cu and Cd on Body Indices of Nile Tilapia (Oreochromis niloticus) with emphasis on protein pattern. Turk J Fish Aquat Sci 13:593–602

    Article  Google Scholar 

  34. Saeed SM (2013) Impact of environmental parameters on fish condition and quality in Lake Edku, Egypt. Egypt J Aquat Biol Fish 17:101–112

    Google Scholar 

  35. Bervoets L, Knapen D, De Jonge M, Van Campenhout K, Blust R (2013) Differential hepatic metal and metallothionein levels in three feral fish species along a metal pollution gradient. PLoS ONE 8:1–11

    Article  CAS  Google Scholar 

  36. Bryan GW (1976) Some effects of heavy metal tolerance in aquatic organisms. In: Lockwood APM (ed) Effects of pollutants on aquatic organisms. Cambridge University Press, Cambridge, pp 7–34

    Google Scholar 

  37. Amiard-Triquet A, Amiard JC (1998) Influence of ecological factors on accumulation of metal mixtures. In: Langston WJ, Bebianno MJ (eds) Metal metabolism in aquatic environments. Chapman and Hall, London, pp 351–386

    Chapter  Google Scholar 

  38. Bryan GW, Hummerstone LG (1973) Brown seaweed as an indicator of heavy metals estuaries in South-West England. J Mar Biol Assoc UK 53:705–720

    Article  CAS  Google Scholar 

  39. Olaifa FE, Olaifa AK, Adelaja AA, Owolabi AG (2004) Heavy metal contamination of Clarias gariepinus from a Lake and Fish farm in Ibadan, Nigeria. Afr J Biomed Res 7:145–148

    Google Scholar 

  40. Mendil D, Uluözlü O, Hasdemir E, Tüzen M, Sari H, Suiçmez M (2005) Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chem 90:175–179

    Article  CAS  Google Scholar 

  41. Perevoznikov MA, Bogdanov EA (1999) Tyazhelye metally v presnovodnyh ecosystemah (Heavy metals in freshwater ecosystems). GosNIORKh, St. Petersburg, p 228

    Google Scholar 

  42. Farkas A, Salanki J, Specziar A (2003) Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low- contaminated site. Water Res 37:959–964

    Article  CAS  PubMed  Google Scholar 

  43. Javed M, Usmani N (2011) Accumulation of heavy metals in fishes: a human health concern. Int J Environ Sci 2:659–670

    CAS  Google Scholar 

  44. Sobolev KD (2005) Toxicological peculiarities of accumulation of heavy metal ions in natural and artificial fish food under conditions of electric power stations’ warm waste waters. Sbornik trudov Federal’nogo gosudarstvennogo nauchno-issledovatel’skogo institute ozernogo i rechnogo rybnogo hozyaistva (Collection of papers of Federal State Scientific Institute GOSNIORkh), pp 362–373

  45. Farag AM, Stansbury MA, Hogstrand C et al (1995) The physiological impairment of free-ranging brown trout exposed to metals in the Clark Fork River, Montana. Can J Fish Aquat Sci 52:2038–2050

    Article  CAS  Google Scholar 

  46. Yousafzai AM, Douglas P, Chivers KAR, Ahmad I, Siraj M (2010) Comparison of heavy metals burden in two freshwater fishes Wallago attu and Labeo dyocheilus with regard to their feeding habits in natural ecosystem. Pak J Zool 42:537–544

    CAS  Google Scholar 

  47. Wepener V, Van-Vuren JHJ, Du-Preez HH (2001) Uptake and distribution of a copper, iron and zinc mixture in gill, liver and plasma of a freshwater teleost, Tilapia sparrmanii. Water SA 27:99–108

    CAS  Google Scholar 

  48. Coetzee L, Du Preez HH, Van Vuren JHJ (2002) Metal concentrations in Clarias gariepinus and Labeo umbratus from the Olifants and Klein Olifants River, Mpumalanga, South Africa: zinc, copper, manganese, lead, chromium, nickel, aluminium and iron. Water SA 28:433–448

    Article  CAS  Google Scholar 

  49. Ahmad Z, Al-Ghanim KA, Al-Balawi HFA, Al-Misned F, Mahboob S, Sulaiman EM (2015) Accumulations of heavy metals in the fish Orecochromis niloticus, and Poecilia latipinna and their concentration in water and sediment of Dam Lake of Wadi Namar, Saudi Arabia. J Environ Biol 36:295–299

    PubMed  Google Scholar 

  50. Mohamed FA (2008) Bioaccumulation of selected metals and histopathological alterations in tissues of Oreochromis niloticus and Lates niloticus from lake Nasser, Egypt. Glob Vet 2:205–218

    Google Scholar 

  51. Al-Weher SM (2008) Levels of heavy metal Cd, Cu and Zn in three fish species collected from the Northern Jordan Valley, Jordan. Jordan J Biol Sci 1(1):41–46

    Google Scholar 

  52. Crafford D, Avenant-Oldewage A (2010) Bioaccumulation of non-essential trace metals in tissues and organs of Clarias gariepinus (sharptooth catfish) from the Vaal River system—strontium, aluminium, lead and nickel. Water SA 36:621–640

    Article  CAS  Google Scholar 

  53. Baki AS, Dkhil MA, Al-Quraishy S (2011) Bioaccumulation of some heavy metals in the tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. Afr J Biotechnol 13:2541–2547

    Google Scholar 

  54. Gurcu B, Sukran Y, Yucel BGK, Serdar K (2010) Investigation of histopathological and cytogenetic effects of heavy metal pollution on Cyprinus carpio (Linnaeus, 1758). J Anim Vet Adv 9:798–808

    Article  CAS  Google Scholar 

  55. Murugan SS, Karuppaswamy R, Poongodi K, Puvaneswari S (2008) Bioaccumulation patterns of zinc in fresh water fish Channa punctatus (Bloch.) after chronic exposure. Turk J Fish Aquat Sci 8:55–59

    Google Scholar 

  56. Nwajei GE, Obi-Iyeke GE, Okwagi P (2012) Distribution of selected trace metal in fish parts from the River Nigeria. Res J Recent Sci 1:81–84

    CAS  Google Scholar 

  57. Javed M, Usmani N (2015) Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by Thermal Power Plant effluent. Saudi J Biol Sci 22:237–242

    Article  CAS  PubMed  Google Scholar 

  58. Schaperclaus W, Kulow H, Schreckenbach K (1992) Fish disease. A. A. Balkema, Rotterdam

    Google Scholar 

  59. Jacobs MN, Covaci A, Schepens P (2002) Investigation of selected persistant organic pollutants in farmed Atlantic salmon (Salamo salar), salmon aquaculture feed and fish oil components of the feed. Environ Sci Technol 36:2797–2805

    Article  CAS  PubMed  Google Scholar 

  60. Gopal V, Parvathy S, Balasubramanian PR (1997) Effect of heavy metals on the blood protein biochemistry of the fish Cyprinus carpio and its use as a bioindicator of pollution stress. Environ Monit Assess 48:117–124

    Article  CAS  Google Scholar 

  61. Abdel-Tawwab M, Mamdouh AAM, Fayza EA (2007) Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity. Aquaculture 272:335–345

    Article  CAS  Google Scholar 

  62. Zutshi BSG, Prasad R, Nagaraja R (2010) Alteration in hematology of Labeo rohita under stress of pollution from Lakes of Bangalore, Karnataka, India. Environ Monit Assess 168:11–19

    Article  CAS  PubMed  Google Scholar 

  63. Isani G, Giulia A, Emilio C, Serena DM, Daniela E, Enzo S (2011) Effects of waterborne Cu exposure in gilthead sea bream (Sparus aurata): a proteomic approach. Fish Shellfish Immunol 31:1051–1058

    Article  CAS  PubMed  Google Scholar 

  64. Salman NA (2011) Assessment of environmental toxicity in Iraqi Southern marshes using fish as bio-indicators. Ekologija 1:21–29

    Google Scholar 

  65. Parvathi K, Palanivel S, Mathan R, Sarasu (2011) Sublethal effects of chromium on some biochemical profiles of the fresh water teleost, Cyprinus carpio. Int J Appl Biol Pharm Technol 2:295–300

    Google Scholar 

  66. Shaheen T, Akhtar T (2012) Assessment of chromium toxicity in Cyprinus carpio through hematological and biochemical blood markers. Turk J Zool 36:682–690

    CAS  Google Scholar 

  67. Abedi Z, Khalesi KM, Eskandari KS (2013) Biochemical and hematological profiles of common carp (Cyprinus Carpio) under sublethal effects of trivalent chromium. Iran J Toxicol 7:782–792

    CAS  Google Scholar 

  68. Shelke Abhay D (2013) Comparative study of cholesterol alterations in a freshwater teleost fish, Ambylpharyngodon mola exposure to heavy metals. Bioscan 8:1001–1004

    Google Scholar 

  69. Perrier H, Perrier C, Peres G, Gras J (1979) The lipoproteins of the plasma of the rainbow trout (Salmo gairdnerii Richardson): immunoelectrophoresis, selective precipitation and lipid composition. Comp Biochem Physiol 62B:245–248

    CAS  Google Scholar 

  70. Vinodhini R, Narayanan M (2009) The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iran J Environ Health Sci Eng 6:23–28

    CAS  Google Scholar 

  71. Abalaka SE (2013) Evaluation of the haematology and biochemistry of Clarias gariepinus as biomarkers of environmental pollution in Tiga dam, Nigeria. Braz Arch Biol Biotechnol 56:371–376

    Article  CAS  Google Scholar 

  72. Hanan SG, El-Kasheif MA, Ibrahim SA, Authman MMN (2013) Effect of water pollution in El-Rahawy drainage canal on hematology and organs of freshwater fish Clarias gariepinus. World Appl Sci J 21:329–341

    Google Scholar 

  73. Seham AI, Soad AM (2005) Effect of heavy metals accumulation on enzyme activity and histology in liver of some nile fish in Egypt. Egypt J Aquat Biol Fish 9:203–219

    Article  Google Scholar 

  74. Zorriehzahra MJ, Hassan MD, Gholizadeh M, Saidi AA (2010) Study of some hematological and biochemical parameters of Rainbow trout (Oncorhynchus mykiss) fry in western part of Mazandaran province, Iran. Iran J Fish Sci 9:185–198

    Google Scholar 

  75. Tadashi F (2002) Formation and removal of reactive oxygen species, lipid peroxides and free radicals, and their biological effects. Yakugaku Zasshi 122:203–218

    Article  Google Scholar 

  76. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    Article  CAS  PubMed  Google Scholar 

  77. Lu SC (2000) Regulation of glutathione synthesis. Curr Top Cell Regul 36:95–116

    Article  CAS  PubMed  Google Scholar 

  78. Marcano L, Nusetti O, Zapata-Vívenes E, Nusetti S, Esclapés MM (2006) Fuel oil effects on antioxidant enzymes and immunological responses in the fish Thalassophryne maculosa (Pisces: Batrochoididae). J Braz Soc Ecotoxicol 1:31–35

    Article  Google Scholar 

  79. Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health 4:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Almroth BC, Joachim S, Eiríkur S, Tor FH, Lars F (2008) Protein carbonyls and antioxidant defenses in corkwing wrasse (Symphodus melops) from a heavy metal polluted and a PAH polluted site. Mar Environ Res 66:271–277

    Article  CAS  PubMed  Google Scholar 

  81. Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, Carassius auratus. Mutat Res 698:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lopez EL, Jacinto ES, Claudia S, Liliana F (2011) Responses of antioxidant enzymes, lipid peroxidation, and Na +/K + -ATPase in liver of the fish Goodea atripinnis exposed to Lake Yuriria water. Fish Physiol Biochem 37:511–522

    Article  CAS  Google Scholar 

  83. Francisco PP, João C, Ana Maria C, Conceição F, Paulo T, Luís C, Ivo C, Maria MO, António FF (2013) Oxidative stress responses and histological hepatic alterations in barbel, Barbus bocagei, from Vizela river, Portugal. Rev Int Contam Ambie 29:29–38

    Google Scholar 

  84. Kubraka OI, Viktor VH, Bohdana MR, Harald P, Maria AM, Michael K, Doris A, Volodymyr IL (2012) Tissue specificity in nickel uptake and induction of oxidative stress in kidney and spleen of goldfish Carassius auratus, exposed to waterborne nickel. Aquat Toxicol 118–119:88–96

    Article  CAS  Google Scholar 

  85. Kubrak OI, Bohdana MR, Viktor VH, Olena YV, Kenneth BS, Janet MS, Volodymyr IL (2012) Goldfish exposure to cobalt enhances hemoglobin level and triggers tissue-specific elevation of antioxidant defenses in gills, heart and spleen. Comp Biochem Physiol Part C 155:325–332

    CAS  Google Scholar 

  86. Rajeshkumar S, Jayaprakash M, Natesan M (2013) Impact of heavy metals on antioxidant activity in different tissue of milk fish Chanos chanos. Int J Appl Pharm Technol 4:272–279

    CAS  Google Scholar 

  87. Saglam D, Gülüzar A, Zehra D, Emine B, Ceren G, Ali E, Mustafa C (2014) Response of the antioxidant system of freshwater fish (Oreochromis niloticus) exposed to metals (Cd, Cu) in differing hardness. Turk J Fish Aquat Sci 14:43–52

    Google Scholar 

  88. Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227:375–381

    Article  CAS  PubMed  Google Scholar 

  89. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19

    Article  CAS  PubMed  Google Scholar 

  90. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals. Phys Chem Ref Data 17:513–517

    Article  CAS  Google Scholar 

  91. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Rev Free Radic Biol Med 18:1033–1077

    Article  CAS  Google Scholar 

  92. Jha A (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–221

    Article  CAS  PubMed  Google Scholar 

  93. Ahmad I, Maria VL, Oliveira M, Pacheco M, Santos MA (2006) Oxidative stress and genotoxic effects in gill and kidney of Anguilla anguilla L. exposed to chromium with or without pre-exposure to β-naphthoflavone. Mutat Res 608:16–28

    Article  CAS  PubMed  Google Scholar 

  94. Mai H, Jérôme C, Justine B, Oliver G, Angel B, Hélène B, Bénédicte M (2012) Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas). Mar Pollut Bull 64:2663–2670

    Article  CAS  PubMed  Google Scholar 

  95. Barsiene J, Aleksandras R, Thomas L, Laura AN, Aleksandras M (2013) Environmental genotoxicity and cytotoxicity levels in fish from the North Sea offshore region and Atlantic coastal waters. Mar Pollut Bull 68:106–116

    Article  CAS  PubMed  Google Scholar 

  96. Ameur WB, de Joaquin L, El Yassine M, Badreddine B, Souad T, Lydia C, Joan S, David RL, Javier GL, Mohamed RD, Miquel B (2012) Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Mar Pollut Bull 64:241–251

    Article  CAS  PubMed  Google Scholar 

  97. Ravanaiah G, Narasimha Murthy CV (2010) Impact of aquaculture and industrial pollutants of Nellore district on the histopathological changes in the gill of fish, Tilapia mossambica. Indian J Comp Anim Phsiol 28:108–114

    Google Scholar 

  98. Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Aquat Sci 42:630–648

    Article  CAS  Google Scholar 

  99. Hadi A, Alwan SF (2012) Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminum. Int J Pharm Life Sci 3:2017–2081

    Google Scholar 

  100. Gingerich WH (1982) Hepatic toxicology of fishes. In: Weber LJ (ed) Aquatic toxicology. Raven Press, New York, pp 55–105

    Google Scholar 

  101. Gabriel UU, Ezeri GNO, Amakiri EU (2007) Liver and kidney histopathology: biomarkers of no. 1 fuel toxicosis in African catfish, Clarias gariepinus. J Anim Vet Adv 6:379–384

    Google Scholar 

  102. Javed M, Ahmad I, Usmani N, Ahmad M (2016) Studies on biomarkers of oxidative stress and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere 151:210–219

    Article  CAS  PubMed  Google Scholar 

  103. Ashish M, Banalata M (2008) Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environ Toxicol Pharmacol 26:136–141

    Article  CAS  Google Scholar 

  104. Prasanna SJ (2011) Studies on the effects of zinc sulphate toxicity on the detoxifying organs of fresh water fish Clarias batrachus (Linn.). Gold Res Thoughts 1:1–4

    Google Scholar 

  105. Authman MMN, Ibrahim SA, El-Kasheif MA, Gaber HS (2013) Heavy metals pollution and their effects on gills and liver of the Nile catfish (Clarias gariepinus) inhabiting El-Rahawy Drain, Egypt. Glob Vet 10:103–115

    CAS  Google Scholar 

  106. Hughes GM, Perry SF, Brown VM (1979) A morphometric study of the effects of nickel, chromium and cadmium on the secondary lamellae of rainbow trout gills. Water Res 13:665–679

    Article  CAS  Google Scholar 

  107. Hinton DE, Laurén DJ (1990) Integrative histopathological effects of environmental stressors on fishes. Am Fish Soc Symp 8:51–66

    Google Scholar 

  108. Wolf JC, Wolfe MJ (2005) A brief overview of non-neoplastic hepatic toxicity in fish. Toxicol Pathol 33:75

    Article  CAS  PubMed  Google Scholar 

  109. Ferguson HW (1989) Systemic pathology of fish: a text and atlas of comparative tissue responses in diseases of teleosts. Iowa State University Press, Ames, p 263

    Google Scholar 

  110. USEPA (United States Environmental Protection Agency) (2011) USEPA Regional Screening Level (RSL) summary table: November 2011. http://www.epa.gov/regshwmd/risk/human/Index.htm

  111. NYSDOH (New York State Department of Health) (2007) Hopewell precision area contamination: appendix C-NYS DOH. Procedure for evaluating potential health risks for contaminants of concern. http://www.health.ny.gov/environmental/investigations/hopewell/appendc.htm

  112. Javed M, Usmani N, Ahmad I, Ahmad M (2015) Studies on the oxidative stress and gill histopathology in Channa punctatus of the canal receiving heavy metal-loaded effluent of Kasimpur Thermal Power Plant. Environ Monit Assess 187:4179. doi:10.1007/s10661-014-4179-6

    Article  CAS  PubMed  Google Scholar 

  113. Javed M, Usmani N (2016) Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. SpringerPlus 5:776. doi:10.1186/s40064-016-2471-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Chairman, Department of Zoology for providing necessary facilities. First author is grateful to UGC for providing the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehjbeen Javed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Significance statement

This overview highlights the issues of surface water pollution and fish health due to heavy metals. It includes the major polluted water bodies of the world and their source of pollution. In addition, it also emphasizes upon the relevance of biomarkers which can suitably be used to assess the fish health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, M., Usmani, N. An Overview of the Adverse Effects of Heavy Metal Contamination on Fish Health. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 389–403 (2019). https://doi.org/10.1007/s40011-017-0875-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-017-0875-7

Keywords

Navigation