Skip to main content
Log in

Two Paralogous Genes Encoding Small Subunits of ADP-glucose Pyrophosphorylase in Maize, Bt2 and L2, Replace the Single Alternatively Spliced Gene Found in Other Cereal Species

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Two types of gene encoding small subunits (SSU) of ADP-glucose pyrophosphorylase, a starch-biosynthetic enzyme, have been found in cereals and other grasses. One of these genes encodes two SSU proteins. These are targeted to different subcellular compartments and expressed in different organs of the plant: the endosperm cytosol and the leaf plastids. The SSU gene encoding two proteins evolved from an ancestral gene encoding a single protein by the acquisition of an alternative first exon. Prior to the work reported here, this type of SSU gene had been found in all grasses examined except maize. In maize, two separate genes, Bt2 and L2, were known to have the same roles as the alternatively spliced gene found in other grasses. The evolutionary origin of these maize genes and their relationship to the SSU genes in other grasses were unclear. Here we show that Bt2 and L2 are paralogous genes that arose as a result of the tetraploidization of the maize genome. Both genes derive from an ancestral alternatively spliced SSU gene orthologous to that found in other grasses. Following duplication, the Bt2 and L2 genes diverged in function. Each took a different one of the two functions of the ancestral gene. Now Bt2 encodes the endosperm cytosolic SSU but does not contribute significantly to leaf AGPase activity. Similarly, L2 has lost the use of one of its two alternative first exons. It can no longer contribute to the endosperm cytosolic SSU but is probably responsible for the bulk of the leaf AGPase SSU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth C, Tarvis M, Clark J (1993) Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Mol Biol 23:23–33

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth C, Hosein F, Tarvis M, Weir F, Burrell M, Devos KM, Gale MD (1995) Adenosine diphosphate glucose pyrophosphorylase genes in wheat: differential expression and gene mapping. Planta 197:1–10

    Article  PubMed  CAS  Google Scholar 

  • Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46:937–946

    Article  PubMed  CAS  Google Scholar 

  • Bae JM, Giroux M, Hannah LC (1990) Cloning and characterization of the brittle-2 gene of maize. Maydica 35:317–322

    Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225

    Article  PubMed  CAS  Google Scholar 

  • Beckles DM, Smith AM, ap Tees T (2001) A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol 125:818–827

    Article  PubMed  CAS  Google Scholar 

  • Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2:581–588

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Johnson PE, Beckles DM, Fincher GB, Jenner HL, Naldrett MJ, Denyer K (2002) Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol 130:1464–1475

    Article  PubMed  CAS  Google Scholar 

  • Chandler VL, Brendel V (2002) The maize genome sequencing project. Plant Physiol 130:1594–1597

    Article  PubMed  CAS  Google Scholar 

  • Denyer K, Dunlap F, Thorbjørnsen T, Keeling P, Smith AM (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112:779–785

    Article  PubMed  CAS  Google Scholar 

  • Dickinson DB, Preiss J (1969) Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol 44:1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, d’Ennequin ML, Peek A, Sawkins MC (2001) Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA 97:7008–7015

    Article  Google Scholar 

  • Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Hannah LC (1994) ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet 243:400–408

    PubMed  CAS  Google Scholar 

  • Ghosh HP, Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase—a regulatory enzyme in biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241:4491–4504

    PubMed  CAS  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88:373–457

    Article  Google Scholar 

  • Hampson S, McLysaght A, Gaut B, Baldi P (2003) LineUp: statistical detection of chromosomal homology with application to plant comparative genomics. Genome Res 13:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Hannah LC (1997) Starch synthesis in the maize endosperm. In Larkins BA, Vasil IK (eds) Advances in cellular and molecular biology of plants, Vol 4. Kluwer Academic, Dordrecht, The Netherlands, pp 375–405

    Google Scholar 

  • Hannah LC, Shaw JR, Giroux MJ, Reyss A, Prioul JL, Bae JM, Lee JY (2001) Maize genes encoding the small subunit of ADP–glucose pyrophosphorylase. Plant Physiol 127:173–183

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastidial acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Johnson PE, Patron NJ, Bottrill AR, Dinges JR, Fahy BF, Parker ML, Waite DN, Denyer K (2003) A low-starch barley mutant, Risø 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiol 131:684–696

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2003) What happens to genes in duplicated genomes. Proc Natl Acad Sci USA 100:4369–4371

    Article  PubMed  CAS  Google Scholar 

  • Lal S, Choi J-H, Shaw JR, Hannah LC (1999) A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol 121:411–418

    Article  PubMed  CAS  Google Scholar 

  • Li H, Sullivan TD, Keegstra K (1992) Information for targeting to the chloroplastic inner envelope membrane is contained in the mature region of the maize Bt1-encoded protein. J Biol Chem 267:18999–19004

    PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Sahto H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41:1131–1141

    Article  CAS  Google Scholar 

  • Patron NJ, Greber B, Fahy BF, Laurie DA, Parker ML, Denyer K (2004) The lys5 mutations of barley reveal the nature and importance of plastidial ADP-glucose transporters for starch synthesis in cereal endosperm. Plant Physiol 135:2088–2097

    Article  PubMed  CAS  Google Scholar 

  • Prioul J-L, Jeanette E, Reyss A, Grégory N, Giroux M, Hannah LC, Causse M (1994) Expression of ADP-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol 104:179–187

    Article  PubMed  CAS  Google Scholar 

  • Rösti S, Rudi H, Rudi K, Opsahl-Sortberg H-G, Fahy B, Denyer K (2006) The gene encoding the cytosolic small subunit of ADP-glucose pyrophosphorylase in barley endosperm also encodes the major plastidial small subunit in the leaves. J Exp Bot 57:3619–3626

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant genetics. Oliva and Boyd, Edinburgh, pp 23–45

    Google Scholar 

  • Shannon JC, Pien F-M, Cao H, Liu K-C (1998) Brittle-1, an adenylate translocator, facilitates transfer of extra plastidial synthesized ADP-glucose into amyloplasts of maize endosperms. Plant Physiol 117:1235–1252

    Article  PubMed  CAS  Google Scholar 

  • Sikka VK, Choi SB, Kavakli IH, Sakulsingharoj C, Gupta S, Ito H, Okita TW (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci 161:461–468

    Article  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 6:1581–1590

    Article  CAS  Google Scholar 

  • Swigoňová Z, Lai JS, Ma JX, Ramakrishna W, Llaca M, Bennetzen JL, Messing J (2004a) On the tetraploid origin of the maize genome. Comp Funct Genomics 5:281–284

    Article  PubMed  CAS  Google Scholar 

  • Swigoňová Z, Lai JS, Ma JX, Ramakrishna W, Llaca M, Bennetzen JL, Messing J (2004b) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  Google Scholar 

  • Taylor J S, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    Article  PubMed  CAS  Google Scholar 

  • Teas HJ, Teas AN (1953) Heritable characters in maize. Description and linkage of brittle endosperm-2. J Hered 44:156–158

    Google Scholar 

  • Tetlow IJ, Davies EJ, Vardy KA, Bowsher CG, Burrell MM, Emes MJ (2003) Subcellular localisation of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. J Exp Bot 54:715–725

    Article  PubMed  CAS  Google Scholar 

  • Thorbjørnsen T, Villand P, Denyer K, Olsen OA, Smith AM (1996a) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J 10:243–250

    Article  Google Scholar 

  • Thorbjørnsen T, Villand P, Kleczkowski LA, Olsen OA (1996b) A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochem J 313:149–154

    PubMed  Google Scholar 

  • Tsai C, Nelson OE (1966) Starch-deficient maize mutant lacking adenosine diphosphate pyrophosphorylase activity. Science 151:341–343

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Hardeman K, Fowler J, Rivin C (2006) Divergence of duplicated genes in maize: evolution of contrasting targeting information for enzymes in the porphyrin pathway. Plant J 45:727–739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Alison M Smith, Prof. Peter Keeling, Dr. Duncan Stanley, and Dr. David Laurie for constructive criticism of the manuscript. This work was supported by a CASE studentship from the Biotechnology and Biological Sciences Research Council UK (BBSRC). The industrial partner for the CASE studentship was Syngenta Ltd. The John Innes Centre is supported by a core strategic grant from the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Denyer.

Additional information

Reviewing Editor: Dr. Patrick Keeling

Sequences have been deposited in GenBank under accession numbers AY727927, DQ118037, and DQ118038.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösti, S., Denyer, K. Two Paralogous Genes Encoding Small Subunits of ADP-glucose Pyrophosphorylase in Maize, Bt2 and L2, Replace the Single Alternatively Spliced Gene Found in Other Cereal Species. J Mol Evol 65, 316–327 (2007). https://doi.org/10.1007/s00239-007-9013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9013-0

Keywords

Navigation