Skip to main content
Log in

Error Minimization and Coding Triplet/Binding Site Associations Are Independent Features of the Canonical Genetic Code

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The canonical genetic code has been reported both to be error minimizing and to show stereochemical associations between coding triplets and binding sites. In order to test whether these two properties are unexpectedly overlapping, we generated 200,000 randomized genetic codes using each of five randomization schemes, with and without randomization of stop codons. Comparison of the code error (difference in polar requirement for single-nucleotide codon interchanges) with the coding triplet concentrations in RNA binding sites for eight amino acids shows that these properties are independent and uncorrelated. Thus, one is not the result of the other, and error minimization and triplet associations probably arose independently during the history of the genetic code. We explicitly show that prior fixation of a stereochemical core is consistent with an effective later minimization of error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alff-Steinberger C (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591

    PubMed  Google Scholar 

  • Amirnovin R (1997) An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol 44:473–476

    PubMed  Google Scholar 

  • Ardell DH (1998) On error minimization in a sequential origin of the standard genetic code. J Mol Evol 47:1–13

    PubMed  Google Scholar 

  • Connell GJ, Yarus M (1994) RNAs with dual specificity and dual RNAs with similar specificity. Science 264(5162):1137–1141

    PubMed  Google Scholar 

  • Di Giulio M (1991) On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis. Z Naturforsch 46c:305–312

    Google Scholar 

  • Di Giulio M (1998) The historical factor: the biosynthetic relationships between amino acids and their physiochemical properties in the origin of the genetic code. J Mol Evol 46:615–621

    PubMed  Google Scholar 

  • Di Giulio M (1999) The coevolution theory of the origin of the genetic code. J Mol Evol 48:253–255

    PubMed  Google Scholar 

  • Di Giulio M (2001) A blind empiricism against the coevolution theory of the origin of the genetic code. J Mol Evol 53:724–732

    Article  PubMed  Google Scholar 

  • Di Giulio M, Medugno M (2000) The robust statistical bases of the coevolution theory of genetic code origin. J Mol Evol 20:258–263

    Google Scholar 

  • Dueck G (1993) New optimization heuristics: the great deluge algorithm and the record-to-record travel. J Comput Phys 104:86–92

    Article  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in a million, J Mol Evol 47:238–248

    PubMed  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    PubMed  Google Scholar 

  • Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24:1029–1036

    Article  PubMed  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  PubMed  Google Scholar 

  • Illangasekare M, Yarus M (2002) Phenylalanine-binding RNAs and genetic code evolution. J Mol Evol 54:298–311

    PubMed  Google Scholar 

  • Knight RD, Landweber LF (1998) Rhyme or reason: RNA-arginine interactions and the genetic code. Chem Biol 5:R215–R220

    Article  PubMed  Google Scholar 

  • Knight RD, Landweber LF (2000) Guilt by association: the arginine case revisited. RNA 6:499–510

    Article  PubMed  Google Scholar 

  • Knight RD, Landweber LF, Yarus M (2003) Tests of a stereochemical genetic code. Kluwer Academic/Plenum, New York, pp 115–128

    Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 24:241–247

    Article  PubMed  Google Scholar 

  • Lagerkvist U (1981) Unorthodox codon reading and the evolution of the genetic code. Cell 23:305–306

    Article  PubMed  Google Scholar 

  • Legiewicz M, Yarus M (2005) A more complex isoleucine aptamer with a cognate triplet. J Biol Chem 280:19815–19822

    Article  PubMed  Google Scholar 

  • Levy M, Ellington AD (2001) RNA world: catalysis abets binding, but not vice versa. Curr Biol 11:R665–R667

    Article  PubMed  Google Scholar 

  • Lozupone C, Changayil S, Majerfeld I, Yarus M (2003) Selection of the simplest RNA that binds isoleucine. RNA 9(11):1315–1322

    Article  PubMed  Google Scholar 

  • Majerfeld I, Yarus M (1994) An RNA pocket for an aliphatic hydrophobe. Nat Struct Biol 1:287–292

    Article  PubMed  Google Scholar 

  • Majerfeld I, Yarus M (1998) Isoleucine: RNA sites with associated coding sequences. RNA 4(4):471–478

    PubMed  Google Scholar 

  • Mannironi C, Scerch C, Fruscoloni P, Tocchini-Valentini GP (2000) Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif. RNA 6:520–527

    Article  PubMed  Google Scholar 

  • Miseta A (1989) The role of protein associated amino acid precursor molecules in the organization of genetic codons. Physiol Chem Phys Med NMR 21:237–242

    PubMed  Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  PubMed  Google Scholar 

  • Ronneberg TA, Landweber LF, Freeland SJ (2000) Testing a biosynthetic theory of the genetic code: fact or artifact? Proc Natl Acad Sci USA 97:13690–13695

    Article  PubMed  Google Scholar 

  • Sonneborn TM (1965) Degeneracy of the genetic code: Extent, nature and genetic implications. Academic Press, New York, pp 277–297

    Google Scholar 

  • Szathmary E (1993) Coding coenzyme handles: A hypothesis for the origin of the genetic code. Proc Natl Acad Sci USA 90:9916–9920

    PubMed  Google Scholar 

  • Szathmary E (1999) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet 15(6):223–229

    Article  PubMed  Google Scholar 

  • Tao J, Frankel AD (1996) Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry 35:2229–2238

    Article  PubMed  Google Scholar 

  • Taylor FJR, Coates D (1989) The code within the codons. Bio Systems 22:177–187

    PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    PubMed  Google Scholar 

  • Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    PubMed  Google Scholar 

  • Woese CR (1973) Evolution of the genetic code. Naturwissenschaften 60:447–459

    Article  PubMed  Google Scholar 

  • Wong J-TF (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    PubMed  Google Scholar 

  • Yang Z (1996) Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol 42(2):294–307

    Article  PubMed  Google Scholar 

  • Yarus M (1998) Amino acids as RNA ligands: A direct-RNA-template theory for the code’s origin. J Mol Evol 47:109–117

    PubMed  Google Scholar 

  • Yarus M, Christian EL (1989) Genetic code origins. Nature 342:349–350

    Article  Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: The escaped triplet theory. Annu Rev Biochem 74:17998

    Article  PubMed  Google Scholar 

  • Zhu CT, Zeng XB, Huang WD (2003) Codon usage decreases the error minimization within the genetic code. J Mol Evol 57:533–537

    Article  PubMed  Google Scholar 

  • Zinnen S, Yarus M (1995) An RNA pocket for the planar aromatic side chains of phenylalanine and tryptophane. Nucleic Acids Symp Ser 33:148–151

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH Grant GM 48080 and NASA Center for Astrobiology Grant NCC2-1052 to M. Yarus. We would like to thank members of the Yarus and Knight labs, Eors Szathmary, and an anonymous reviewer for critical discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Knight.

Additional information

[Reviewing Editor : Dr. Stephen Freeland]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caporaso, J.G., Yarus, M. & Knight, R. Error Minimization and Coding Triplet/Binding Site Associations Are Independent Features of the Canonical Genetic Code. J Mol Evol 61, 597–607 (2005). https://doi.org/10.1007/s00239-004-0314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0314-2

Keywords

Navigation