Skip to main content

Advertisement

Log in

Prediction of H3 K27M-mutant in midline gliomas by magnetic resonance imaging: a systematic review and meta-analysis

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To summarize the predictive value of MRI for H3 K27M-mutant in midline gliomas using meta-analysis.

Methods

Systematic electronic searches of the PubMed, Embase, ISI Web of Science, and Cochrane Library up to Jun 31, 2021, were conducted by two experienced neuroradiologists with the keywords of “MRI,” “Glioma,” and “H3 K27M.” The hierarchical summary receiver-operating characteristic (HSROC) model was used to calculate the pooled sensitivity, specificity, positive likelihood ratio (LR +), negative likelihood ratio (LR −), and diagnostic odds ratio (DOR). Coupled forest plots were used to evaluate the heterogeneity of the included studies.

Results

Of seven original studies with a total of 593 patients, 240 glioma patients were included, with 45.5–70.6% H3 K27M-mutant gliomas. Using MRI, a pooled sensitivity of 0.78 (95% CI, 0.66–0.87), specificity of 0.85 (95% CI, 0.76–0.91), LR + of 5.07 (95% CI, 3.19–8.08), LR − of 0.26 (95% CI, 0.16–0.42), and DOR of 19.80 (95% CI, 9.28–42.28) were achieved for H3 K27M-mutant prediction. Significant heterogeneity was observed among the studies in terms of sensitivity (Q = 16.83, df = 7, p = 0.02; I2 = 58.40 [95% CI, 25.83–90.97]), LR − (Q = 16.61, df = 7, p = 0.02; I2 = 57.87 [95% CI, 24.81–90.93]), and DOR (Q = 14.05, df = 7, p = 0.05; I2 = 50.18 [95% CI, 10.06–90.31]).

Conclusions

This meta-analysis demonstrated a clinical value of MRI to predict H3 K27M-mutant in midline gliomas with a pooled sensitivity of 0.78 and specificity of 0.85.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  Google Scholar 

  2. Larson JD, Kasper LH, Paugh BS, Jin H, Wu G, Kwon CH, Fan Y, Shaw TI, Silveira AB, Qu C, Xu R, Zhu X, Zhang J, Russell HR, Peters JL, Finkelstein D, Xu B, Lin T, Tinkle CL, Patay Z, Onar-Thomas A, Pounds SB, McKinnon PJ, Ellison DW, Zhang J, Baker SJ (2019) Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell 35:140-155.e7

    Article  CAS  Google Scholar 

  3. Schulte JD, Buerki RA, Lapointe S, Molinaro AM, Zhang Y, Villanueva-Meyer JE, Perry A, Phillips JJ, Tihan T, Bollen AW, Pekmezci M, Butowski N, Oberheim Bush NA, Taylor JW, Chang SM, Theodosopoulos P, Aghi MK, Hervey-Jumper SL, Berger MS, Solomon DA, Clarke JL (2020) Clinical radiologic, and genetic characteristics of histone H3 K27M-mutant diffuse midline gliomas in adults. Neuro-oncology Adv 2:vdaa142

    Article  Google Scholar 

  4. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ, Perry A (2016) Diffuse midline gliomas with histone H3–K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580

    Article  CAS  Google Scholar 

  5. Aihara K, Mukasa A, Gotoh K, Saito K, Nagae G, Tsuji S, Tatsuno K, Yamamoto S, Takayanagi S, Narita Y, Shibui S, Aburatani H, Saito N (2014) H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro Oncol 16:140–146

    Article  CAS  Google Scholar 

  6. Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C (2014) Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 128:573–581

    Article  CAS  Google Scholar 

  7. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya R (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol 3:193–200

    Article  CAS  Google Scholar 

  8. Zhuo Z, Qu L, Zhang P, Duan Y, Cheng D, Xu X, Sun T, Ding J, Xie C, Liu X, Haller S, Barkhof F, Zhang L, Liu Y (2021) Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics. Eur J Nucl Med Mol Imaging 48:4426–4436

    Article  CAS  Google Scholar 

  9. Kandemirli SG, Kocak B, Naganawa S, Ozturk K, Yip SSF, Chopra S, Rivetti L, Aldine AS, Jones K, Cayci Z, Moritani T, Sato TS (2021) Machine learning-based multi-parametric MRI radiomics for prediction of H3 K27M mutation in midline gliomas. World Neurosurg 151:e78–e85

    Article  Google Scholar 

  10. Su X, Chen N, Sun H, Liu Y, Yang X, Wang W, Zhang S, Tan Q, Su J, Gong Q, Yue Q (2020) Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 22:393–401

    CAS  PubMed  Google Scholar 

  11. Chen H, Hu W, He H, Yang Y, Wen G, Lv X (2019) Noninvasive assessment of H3 K27M mutational status in diffuse midline gliomas by using apparent diffusion coefficient measurements. Eur J Radiol 114:152–159

    Article  Google Scholar 

  12. Jung JS, Choi YS, Ahn SS, Yi S, Kim SH, Lee SK (2019) Differentiation between spinal cord diffuse midline glioma with histone H3 K27M mutation and wild type: comparative magnetic resonance imaging. Neuroradiology 61:313–322

    Article  Google Scholar 

  13. Pan CC, Liu J, Tang J, Chen X, Chen F, Wu YL, Geng YB, Xu C, Zhang X, Wu Z, Gao PY, Zhang JT, Yan H, Liao H, Zhang LW (2019) A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiother Oncol 130:172–179

    Article  CAS  Google Scholar 

  14. Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A, Pescetto M, Biassoni V, Schiavello E, Massollo M, Verrico A, Milanaccio C, Garrè ML, Rossi A, Morana G (2019) Advanced MR imaging and (18)F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging 46:1685–1694

    Article  CAS  Google Scholar 

  15. Thust S, Micallef C, Okuchi S, Brandner S, Kumar A, Mankad K, Wastling S, Mancini L, Jäger HR, Shankar A (2021) Imaging characteristics of H3 K27M histone-mutant diffuse midline glioma in teenagers and adults. Quant Imaging Med Surg 11:43–56

    Article  Google Scholar 

  16. Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE (2011) Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol 13:904–909

    Article  Google Scholar 

  17. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj 339:b2700

    Article  Google Scholar 

  18. LIU Haining WH, ZHANG Ningping, LI Yu, ZENG Yuzhen, SHEN Xizhong, LIU Taotao (2018) Methods of data extraction in meta-analysis of diagnostic accuracy study. Chinese J Evidence-Based Med 18:995-1000

  19. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  Google Scholar 

  20. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  Google Scholar 

  21. Macaskill P GC, Deeks JJ, Harbord RM, Takwoingi Y (2010) Chapter10: Analysing and Presenting Results. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane handbook for systematic reviews of diagnostic test accuracy version 1.0. The Cochrane Collaboration. Available from: http://srdta.cochrane.org/

  22. Rutter CM, Gatsonis CA (2001) A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 20:2865–2884

    Article  CAS  Google Scholar 

  23. Jakola AS, Zhang YH, Skjulsvik AJ, Solheim O, Bø HK, Berntsen EM, Reinertsen I, Gulati S, Förander P, Brismar TB (2018) Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. Clin Neurol Neurosurg 164:114–120

    Article  Google Scholar 

  24. Hernandez-Garcia L, Lahiri A, Schollenberger J (2019) Recent progress in ASL. Neuroimage 187:3–16

    Article  Google Scholar 

  25. Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, Calmon R, Pagès M, Grill J, Dufour C, Blauwblomme T, Puget S, Zerah M, Sainte-Rose C, Brunelle F, Varlet P, Boddaert N (2016) Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology 281:553–566

    Article  Google Scholar 

  26. Lequin M, Hendrikse J (2017) Advanced MR imaging in pediatric brain tumors, clinical applications. Neuroimaging Clin N Am 27:167–190

    Article  Google Scholar 

  27. Zhou J, Heo HY, Knutsson L, van Zijl PCM, Jiang S (2019) APT-weighted MRI: techniques, current neuro applications, and challenging issues. J Magn Reson Imaging: JMRI 50:347–364

    Article  Google Scholar 

  28. Sotirios B, Demetriou E, Topriceanu CC, Zakrzewska Z (2020) The role of APT imaging in gliomas grading: a systematic review and meta-analysis. Eur J Radiol 133:109353

    Article  Google Scholar 

  29. Joo B, Han K, Ahn SS, Choi YS, Chang JH, Kang SG, Kim SH, Zhou J, Lee SK (2019) Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma. Eur Radiol 29:6643–6652

    Article  Google Scholar 

  30. Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, Zu D, Zhou J (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–1041

    Article  Google Scholar 

  31. Lee JB, Park JE, Jung SC, Jo Y, Kim D, Kim HS, Choi CG, Kim SJ, Kang DW (2020) Repeatability of amide proton transfer-weighted signals in the brain according to clinical condition and anatomical location. Eur Radiol 30:346–356

    Article  Google Scholar 

  32. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251

    Article  CAS  Google Scholar 

  33. Jain SU, Rashoff AQ, Krabbenhoft SD, Hoelper D, Do TJ, Gibson TJ, Lundgren SM, Bondra ER, Deshmukh S, Harutyunyan AS, Juretic N, Jabado N, Harrison MM, Lewis PW (2020) H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. Mol Cell 80:726-735.e727

    Article  CAS  Google Scholar 

  34. Castel D, Kergrohen T, Tauziède-Espariat A, Mackay A, Ghermaoui S, Lechapt E, Pfister SM, Kramm CM, Boddaert N, Blauwblomme T, Puget S, Beccaria K, Jones C, Jones DTW, Varlet P, Grill J, Debily MA (2020) Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3–K27M mutation. Acta Neuropathol 139:1109–1113

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Science Foundation of China (Nos. 81870958 and 81571631), the Beijing Municipal Natural Science Foundation for Distinguished Young Scholars (No. JQ20035), the Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals Authority (No. XTYB201831).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwei Zhang or Yaou Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

For this type of study (systematic review and meta-analysis of current literature), formal consent is not required.

Consent to participate

For this type of study (systematic review and meta-analysis of current literature), formal consent is not required.

Consent for publication

For this type of study (systematic review and meta-analysis of current literature), formal consent for publication is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• MRI could predict H3 K27M-mutant in midline gliomas.

• MRI is essential for preoperative diagnostic and postoperative monitoring of H3 K27M-mutant in midline gliomas in a non-invasive and repeatable way.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1582 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, T., Zhuo, Z., Duan, Y. et al. Prediction of H3 K27M-mutant in midline gliomas by magnetic resonance imaging: a systematic review and meta-analysis. Neuroradiology 64, 1311–1319 (2022). https://doi.org/10.1007/s00234-022-02947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-02947-4

Keywords

Navigation