Skip to main content
Log in

Effect of Cooling On Cell Volume and Viability After Nanoelectroporation

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Electric pulses of nanosecond duration (nsEP) are emerging as a new modality for tissue ablation. Plasma membrane permeabilization by nsEP may cause osmotic imbalance, water uptake, cell swelling, and eventual membrane rupture. The present study was aimed to increase the cytotoxicity of nsEP by fostering water uptake and cell swelling. This aim was accomplished by lowering temperature after nsEP application, which delayed the membrane resealing and/or suppressed the cell volume mechanisms. The cell diameter in U-937 monocytes exposed to a train of 50, 300-ns pulses (100 Hz, 7 kV/cm) at room temperature and then incubated on ice for 30 min increased by 5.6 +/− 0.7 μm (40–50%), which contrasted little or no changes (1 +/− 0.3 μm, <10%) if the incubation was at 37 °C. Neither this nsEP dose nor the 30-min cooling caused cell death when applied separately; however, their combination reduced cell survival to about 60% in 1.5–3 h. Isosmotic addition of a pore-impermeable solute (sucrose) to the extracellular medium blocked cell swelling and rescued the cells, thereby pointing to swelling as a primary cause of membrane rupture and cell death. Cooling after nsEP exposure can potentially be employed in medical practice to assist tissue and tumor ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andre FM, Rassokhin MA, Bowman AM, Pakhomov AG (2010) Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death. Bioelectrochemistry 79:95–100

    Article  CAS  PubMed  Google Scholar 

  • Andreason GL, Evans GA (1989) Optimization of electroporation for transfection of mammalian cell lines. Anal Biochem 180:269–275

    Article  CAS  PubMed  Google Scholar 

  • Babiychuk EB, Monastyrskaya K, Potez S, Draeger A (2011) Blebbing confers resistance against cell lysis. Cell Death Differ 18:80–89. doi:10.1038/cdd.2010.81

    Article  CAS  PubMed  Google Scholar 

  • Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1093

    Article  PubMed  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495. doi:10.1096/fj.02-0859fje

    CAS  PubMed  Google Scholar 

  • Bier M, Hammer SM, Canaday DJ, Lee RC (1999) Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics 20:194–201

    Article  CAS  PubMed  Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490. doi:10.1083/jcb.200602085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernomordik LV, Sukharev SI, Popov SV, Pastushenko VF, Sokirko AV, Abidor IG, Chizmadzhev YA (1987) The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta 902:360–373

    Article  CAS  PubMed  Google Scholar 

  • Chu G, Hayakawa H, Berg P (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res 15:1311–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch C, Lee SC (1988) Cell volume regulation in lymphocytes. Ren Physiol Biochem 11:260–276

    CAS  PubMed  Google Scholar 

  • Dunn WA, Hubbard AL, Aronson NN Jr (1980) Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver. J Biol Chem 255:5971–5978

    CAS  PubMed  Google Scholar 

  • Escande-Geraud ML, Rols MP, Dupont MA, Gas N, Teissie J (1988) Reversible plasma membrane ultrastructural changes correlated with electropermeabilization in Chinese hamster ovary cells. Biochim Biophys Acta 939:247–259

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73. doi:10.1038/cdd.2014.137

    Article  CAS  PubMed  Google Scholar 

  • Gehl J, Skovsgaard T, Mir LM (2002) Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta 1569:51–58

    Article  CAS  PubMed  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  CAS  PubMed  Google Scholar 

  • Hall EH, Schoenbach KH, Beebe SJ (2005) Nanosecond pulsed electric fields (nsPEF) induce direct electric field effects and biological effects on human colon carcinoma cells. DNA Cell Biol 24:283–291

    Article  CAS  PubMed  Google Scholar 

  • Haylett T, Thilo L (1991) Endosome-lysosome fusion at low temperature. J Biol Chem 266:8322–8327

    CAS  PubMed  Google Scholar 

  • Hoffmann EK, Pedersen SF (1998) Sensors and signal transduction in the activation of cell volume regulatory ion transport systems. Contrib Nephrol 123:50–78

    Article  CAS  PubMed  Google Scholar 

  • Ibey BL et al (2010) Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells. Biochim Biophys Acta 1800:1210–1219. doi:10.1016/j.bbagen.2010.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibey BL, Roth CC, Pakhomov AG, Bernhard JA, Wilmink GJ, Pakhomova ON (2011) Dose-dependent thresholds of 10-ns electric pulse induced plasma membrane disruption and cytotoxicity in multiple cell lines. PLoS One 6:e15642. doi:10.1371/journal.pone.0015642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180:905–914. doi:10.1083/jcb.200708010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal JK, Andrews NW, Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159:625–635. doi:10.1083/jcb.200208154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinosita K Jr, Tsong TT (1977a) Hemolysis of human erythrocytes by transient electric field. Proc Natl Acad Sci USA 74:1923–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977b) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    Article  PubMed  Google Scholar 

  • Knight DE, Baker PF (1982) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol 68:107–140

    Article  CAS  PubMed  Google Scholar 

  • Lariccia V, Fine M, Magi S, Lin MJ, Yaradanakul A, Llaguno MC, Hilgemann DW (2011) Massive calcium-activated endocytosis without involvement of classical endocytic proteins. J Gen Physiol 137:111–132. doi:10.1085/jgp.201010468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee B, McKenna K, Bramhall J (1985) Kinetic studies of human erythrocyte membrane resealing. Biochim Biophys Acta 815:128–134

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Price M, Prystowsky MB, Deutsch C (1988) Volume response of quiescent and interleukin 2-stimulated T-lymphocytes to hypotonicity. Am J Physiol 254:C286–C296

    CAS  PubMed  Google Scholar 

  • Lieber MR, Steck TL (1982) Dynamics of the holes in human erythrocyte membrane ghosts. J Biol Chem 257:11660–11666

    CAS  PubMed  Google Scholar 

  • McNeil PL, Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 137:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake K, McNeil PL (1995) Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Cell Biol 131:1737–1745

    Article  CAS  PubMed  Google Scholar 

  • Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG (2011) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta 3:792–801

    Article  Google Scholar 

  • Nuccitelli R et al (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuccitelli R et al (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127:1727–1736. doi:10.1002/ijc.25364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahapill PA, Schlichter LC (1990) Modulation of potassium channels in human T lymphocytes: effects of temperature. J Physiol 422:103–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007a) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  CAS  PubMed  Google Scholar 

  • Pakhomov AG, Pakhomova ON (2010) Nanopores: A distinct transmembrane passageway in electroporated cells. In: Pakhomov AG, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology in medicine. CRC Press, Boca Raton, pp 178–194

    Google Scholar 

  • Pakhomov AG et al (2004) Characterization of the cytotoxic effect of high-intensity, 10-ns duration electrical pulses IEEE transactions on Plasma. Science 32:1579–1585

    CAS  Google Scholar 

  • Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH (2007b) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118

    Article  CAS  PubMed  Google Scholar 

  • Pakhomova ON, Gregory B, Semenov I, Pakhomov AG (2014) Calcium-mediated pore expansion and cell death following nanoelectroporation. Biochim Biophys Acta 1838:2547–2554. doi:10.1016/j.bbamem.2014.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomova ON, Gregory BW, Khorokhorina VA, Bowman AM, Xiao S, Pakhomov AG (2011) Electroporation-induced electrosensitization. PLoS ONE 6:e17100. doi:10.1371/journal.pone.0017100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomova ON, Gregory BW, Semenov I, Pakhomov AG (2013) Two modes of cell death caused by exposure to nanosecond pulsed electric field. PLoS ONE 8:e70278. doi:10.1371/journal.pone.0070278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter H (1993) Application of electroporation in recombinant DNA technology. Methods Enzymol 217:461–478

    Article  CAS  PubMed  Google Scholar 

  • Rassokhin MA, Pakhomov AG (2012) Electric field exposure triggers and guides formation of pseudopod-like blebs in U937 monocytes. J Membr Biol 245:521–529. doi:10.1007/s00232-012-9433-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassokhin MA, Pakhomov AG (2014) Cellular regulation of extension and retraction of pseudopod-like blebs produced by nanosecond pulsed electric field (nsPEF). Cell Biochem Biophys 69:555–566. doi:10.1007/s12013-014-9831-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren W, Sain NM, Beebe SJ (2012) Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells. Biochem Biophys Res Commun 421:808–812. doi:10.1016/j.bbrc.2012.04.094

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Dahhou F, Mishra KP, Teissie J (1990) Control of electric field induced cell membrane permeabilization by membrane order. BioChemistry 29:2960–2966

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Delteil C, Serin G, Teissie J (1994) Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res 22:540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saulis G (1999) Cell electroporation: estimation of the number of pores and their sizes. Biomed Sci Instrum 35:291–296

    CAS  PubMed  Google Scholar 

  • Saulis G (2005) The loading of human erythrocytes with small molecules by electroporation. Cell Mol Biol Lett 10:23–35

    CAS  PubMed  Google Scholar 

  • Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. Bioelectrochem Bioenerg 26:1–13

    Article  Google Scholar 

  • Schoenbach KS et al (2007) Bioelectric effects of nanosecond pulses. IEEE Trans on Dielectr Electr Insulation 14:1088–1109

    Article  CAS  Google Scholar 

  • Serpersu EH, Kinosita K Jr, Tsong TY (1985) Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim Biophys Acta 812:779–785

    Article  CAS  PubMed  Google Scholar 

  • Sowers AE, Lieber MR (1986) Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts. FEBS Lett 205:179–184

    Article  CAS  PubMed  Google Scholar 

  • Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe SJ, Buescher S (2003) Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mutat Res 542:65–75

    Article  CAS  PubMed  Google Scholar 

  • Tam C et al (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189:1027–1038. doi:10.1083/jcb.201003053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teissie J, Ramos C (1998) Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes. Biophys J 74:1889–1898. doi:10.1016/S0006-3495(98)77898-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teissie J, Tsong TY (1980) Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane. J Membr Biol 55:133–140

    Article  CAS  PubMed  Google Scholar 

  • Walker K 3rd, Pakhomova ON, Kolb J, Schoenbach KS, Stuck BE, Murphy MR, Pakhomov AG (2006) Oxygen enhances lethal effect of high-intensity, ultrashort electrical pulses. Bioelectromagnetics 27:221–225

    Article  PubMed  Google Scholar 

  • Wang J et al (2012) Synergistic effects of nanosecond pulsed electric fields combined with low concentration of gemcitabine on human oral squamous cell carcinoma in vitro. PLoS ONE 7:e43213. doi:10.1371/journal.pone.0043213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin D et al (2012) Cutaneous papilloma and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF). PLoS ONE 7:e43891. doi:10.1371/journal.pone.0043891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2015 AFOSR MURI grant (to AGP) on Nanoelectropulse-Induced Electromechanical Signaling and Control of Biological Systems, administered through Old Dominion University and by a grant from Pulse Biosciences, Inc. (to O.N.P.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Muratori.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratori, C., Pakhomov, A.G. & Pakhomova, O.N. Effect of Cooling On Cell Volume and Viability After Nanoelectroporation. J Membrane Biol 250, 217–224 (2017). https://doi.org/10.1007/s00232-017-9952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9952-3

Keywords

Navigation