Skip to main content
Log in

Eag1 Voltage-Dependent Potassium Channels: Structure, Electrophysiological Characteristics, and Function in Cancer

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Eag1 (ether-à-go-go-1), a member of the voltage-dependent potassium channel family, is expressed mainly in the brain, and at low levels in placenta, testis, and adrenal gland, and only transiently in myoblasts. Recently, several studies have suggested that Eag1 is selectively expressed in various tumor tissues. Eag1 plays important roles in tumor proliferation, malignant transformation, invasion, metastasis, recurrence, and prognosis. Therefore, it has become a new molecular target for tumor diagnosis, prognosis evaluation, and tumor-targeted therapy. This review provides information about the current progress in understanding Eag1 structure, electrophysiological characteristics, and role in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adaixo R, Harley CA, Castro-Rodrigues AF, Morais-Cabral JH (2013) Structural properties of PAS domains from the KCNH potassium channels. PLoS ONE 8:e59265**

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adaixo R, Morais-Cabral JH (2010) Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1056–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal JR, Griesinger F, Stuhmer W, Pardo LA (2010) The potassium channel Ether a go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Asher V, Khan R, Warren A, Shaw R, Schalkwyk GV, Bali A, Sowter HM (2010) The Eag potassium channel as a new prognostic marker in ovarian cancer. Diagn Pathol 5:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CK, Schwarz JR (2001) Physiology of EAG K+ channels. J Membr Biol 182:1–15

    Article  CAS  PubMed  Google Scholar 

  • Bender AS, Schousboe A, Reichelt W, Norenberg MD (1998) Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J Neurosci Res 52:307–321

    Article  CAS  PubMed  Google Scholar 

  • Bijlenga P, Occhiodoro T, Liu JH, Bader CR, Bernheim L, Fischer-Lougheed J (1998) An ether -a-go-go K+ current, Ih-eag, contributes to the hyperpolarization of human fusion-competent myoblasts. J Physiol 512(Pt 2):317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowiec AS, Hague F, Gouilleux-Gruart V, Lassoued K, Ouadid-Ahidouch H (2011) Regulation of IGF-1-dependent cyclin D1 and E expression by hEag1 channels in MCF-7 cells: the critical role of hEag1 channels in G1 phase progression. Biochim Biophys Acta 1813:723–730

    Article  CAS  PubMed  Google Scholar 

  • Borowiec AS, Hague F, Harir N, Guenin S, Guerineau F, Gouilleux F, Roudbaraki M, Lassoued K, Ouadid-Ahidouch H (2007) IGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation. J Cell Physiol 212:690–701

    Article  CAS  PubMed  Google Scholar 

  • Brelidze TI, Carlson AE, Sankaran B, Zagotta WN (2012) Structure of the carboxy-terminal region of a KCNH channel. Nature 481:530–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brelidze TI, Carlson AE, Zagotta WN (2009) Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods. J Biol Chem 284:27989–27997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brelidze TI, Gianulis EC, DiMaio F, Trudeau MC, Zagotta WN (2013) Structure of the C-terminal region of an ERG channel and functional implications. Proc Natl Acad Sci USA 110:11648–11653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruggemann A, Pardo LA, Stuhmer W, Pongs O (1993) Ether-a-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature 365:445–448

    Article  CAS  PubMed  Google Scholar 

  • Camacho J (2006) Ether a go-go potassium channels and cancer. Cancer Lett 233:1–9

    Article  CAS  PubMed  Google Scholar 

  • Camacho J, Sanchez A, Stuhmer W, Pardo LA (2000) Cytoskeletal interactions determine the electrophysiological properties of human EAG potassium channels. Pflugers Arch 441:167–174

    Article  CAS  PubMed  Google Scholar 

  • Carlson AE, Brelidze TI, Zagotta WN (2013) Flavonoid regulation of EAG1 channels. J Gen Physiol 141:347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Lopez MD, Hernandez-Gallegos E, Vazquez-Sanchez AY, Gariglio P, Camacho J (2014) Antiproliferative and proapoptotic effects of astemizole on cervical cancer cells. Int J Gynecol Cancer 24:824–828

    Article  Google Scholar 

  • Chavez-Lopez MD, Perez-Carreon JI, Zuniga-Garcia V, Diaz-Chavez J, Herrera LA, Caro-Sanchez CH, Acuna-Macias I, Gariglio P, Hernandez-Gallegos E, Chiliquinga AJ, Camacho J (2015) Astemizole-based anticancer therapy for hepatocellular carcinoma (HCC), and Eag1 channels as potential early-stage markers of HCC. Tumor Biol 36:6149–6158

    Article  CAS  Google Scholar 

  • Diaz L, Ceja-Ochoa I, Restrepo-Angulo I, Larrea F, Avila-Chavez E, Garcia-Becerra R, Borja-Cacho E, Barrera D, Ahumada E, Gariglio P, Alvarez-Rios E, Ocadiz-Delgado R, Garcia-Villa E, Hernandez-Gallegos E, Camacho-Arroyo I, Morales A, Ordaz-Rosado D, Garcia-Latorre E, Escamilla J, Sanchez-Pena LC, Saqui-Salces M, Gamboa-Dominguez A, Vera E, Uribe-Ramirez M, Murbartian J, Ortiz CS, Rivera-Guevara C, De Vizcaya-Ruiz A, Camacho J (2009) Estrogens and human papilloma virus oncogenes regulate human ether-a-go-go-1 potassium channel expression. Cancer Res 69:3300–3307

    Article  CAS  PubMed  Google Scholar 

  • Downie BR, Sanchez A, Knotgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, Stuhmer W, Pardo LA (2008) Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 283:36234–36240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias LM, Ocana DB, Diaz L, Larrea F, Avila-Chavez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernandez-Gallegos E, Camacho-Arroyo I, Duenas-Gonzalez A, Perez-Cardenas E, Pardo LA, Morales A, Taja-Chayeb L, Escamilla J, Sanchez-Pena C, Camacho J (2004) Ether a go-go potassium channels as human cervical cancer markers. Cancer Res 64:6996–7001

    Article  CAS  PubMed  Google Scholar 

  • Ganetzky B, Robertson GA, Wilson GF, Trudeau MC, Titus SA (1999) The eag family of K+ channels in Drosophila and mammals. Ann N Y Acad Sci 868:356–369

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ferreiro RE, Kerschensteiner D, Major F, Monje F, Stuhmer W, Pardo LA (2004) Mechanism of block of hEag1 K+ channels by imipramine and astemizole. J Gen Physiol 124:301–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Quiroz J, Garcia-Becerra R, Barrera D, Santos N, Avila E, Ordaz-Rosado D, Rivas-Suarez M, Halhali A, Rodriguez P, Gamboa-Dominguez A, Medina-Franco H, Camacho J, Larrea F, Diaz L (2012) Astemizole synergizes calcitriol antiproliferative activity by inhibiting CYP24A1 and upregulating VDR: a novel approach for breast cancer therapy. PLoS ONE 7:e45063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Quiroz J, Garcia-Becerra R, Santos-Martinez N, Barrera D, Ordaz-Rosado D, Avila E, Halhali A, Villanueva O, Ibarra-Sanchez MJ, Esparza-Lopez J, Gamboa-Dominguez A, Camacho J, Larrea F, Diaz L (2014). In vivo dual targeting of the oncogenic Ether-a-go-go-1 potassium channel by calcitriol and astemizole results in enhanced antineoplastic effects in breast tumors. BMC Cancer. doi:10.1186/1471-2407-14-745

    Google Scholar 

  • Gavrilova-Ruch O, Schonherr K, Gessner G, Schonherr R, Klapperstuck T, Wohlrab W, Heinemann SH (2002) Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J Membr Biol 188:137–149

    Article  CAS  PubMed  Google Scholar 

  • Gessner G, Heinemann SH (2003) Inhibition of hEAG1 and hERG1 potassium channels by clofilium and its tertiary analogue LY97241. Br J Pharmacol 138:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Varela D, Contreras-Jurado C, Furini S, Garcia-Ferreiro R, Stuhmer W, Pardo LA (2006) Different relevance of inactivation and F468 residue in the mechanisms of hEag1 channel blockage by astemizole, imipramine and dofetilide. FEBS Lett 580:5059–5066

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Varela D, Zwick-Wallasch E, Knotgen H, Sanchez A, Hettmann T, Ossipov D, Weseloh R, Contreras-Jurado C, Rothe M, Stuhmer W, Pardo LA (2007) Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 67:7343–7349

    Article  CAS  PubMed  Google Scholar 

  • Gustina AS, Trudeau MC (2009) A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels. Proc Natl Acad Sci USA 106:13082–13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustina AS, Trudeau MC (2011) hERG potassium channel gating is mediated by N- and C-terminal region interactions. J Gen Physiol 137:315–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustina AS, Trudeau MC (2012) HERG potassium channel regulation by the N-terminal eag domain. Cell Signal 24:1592–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustina AS, Trudeau MC (2013) The eag domain regulates hERG channel inactivation gating via a direct interaction. J Gen Physiol 141:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy HR, Durell SR, Warmke J, Drysdale R, Ganetzky B (1991) Similarities in amino acid sequences of Drosophila eag and cyclic nucleotide-gated channels. Science 254:730

    Article  CAS  PubMed  Google Scholar 

  • Haitin Y, Carlson AE, Zagotta WN (2013) The structural mechanism of KCNH-channel regulation by the eag domain. Nature 501:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammadi M, Chopin V, Matifat F, Dhennin-Duthille I, Chasseraud M, Sevestre H, Ouadid-Ahidouch H (2012) Human ether a-gogo K+ channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol 227:3837–3846

    Article  CAS  PubMed  Google Scholar 

  • Hegle AP, Marble DD, Wilson GF (2006) A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci USA 103:2886–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SG, Lee D, Kim J, Seo T, Choe J (2002) Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem 277:2923–2930

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Garduno AM, Mitkovski M, Alexopoulos IK, Sanchez A, Stuhmer W, Pardo LA, Ortega A (2014) K(V)10.1 K+-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. Biochim Biophys Acta-Biomembr 1838:921–931

    Article  CAS  Google Scholar 

  • Kortum F, Caputo V, Bauer CK, Stella L, Ciolfi A, Aawi M, Bocchinfuso G, Flex E, Paolacci S, Dentici ML, Grammatico P, Korenke GC, Leuzzi V, Mowat D, Nair, LDV, Nguyen, TTM, Thierry P, White SM, Dallapiccola B, Pizzuti A, Campeau PM, Tartaglia M, Kutsche K (2015) Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nat Genet 47:661–667

    Article  PubMed  Google Scholar 

  • Lin H, Li Z, Chen, Luo C, Xiao X, Dong J, D, Lu, Yang Y, Wang B, Z (2011) Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether a go-go K+ channel. PLoS ONE 6:e20362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TF, Lin IW, Chen SC, Wu HH, Yang CS, Fang HY, Chiu, MM J en g CJ (2014) The Subfamily-specific Assembly of Eag and Erg K+ Channels Is Determined by both the amino and the carboxyl recognition domains. J Biol Chem 289:22815–22834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RG, Wang WJ, Song N, Chen YQ, Li LH (2006) Diazoxide preconditioning alleviates apoptosis of hippocampal neurons induced by anoxia-reoxygenation in vitro through up-regulation of Bcl-2/Bax protein ratio. Sheng Li Xue Bao 58:345–50

    CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article  CAS  PubMed  Google Scholar 

  • Ludwig J, Terlau H, Wunder F, Bruggemann A, Pardo LA, Marquardt A, Stuhmer W, Pongs O (1994) Functional expression of a rat homologue of the voltage gated either a go-go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart. EMBO J 13:4451–4458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marques-Carvalho MJ, Sahoo N, Muskett FW, Vieira-Pires RS, Gabant G, Cadene M, Schonherr R, Morais-Cabral JH (2012) Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel. J Mol Biol 423:34–46

    Article  CAS  PubMed  Google Scholar 

  • Menendez ST, Villaronga MA, Rodrigo JP, Alvarez-Teijeiro S, Garcia-Carracedo D, Urdinguio RG, Fraga MF, Pardo LA, Viloria CG, Suarez C, Garcia-Pedrero JM (2012) Frequent aberrant expression of the human ether a go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications. J Mol Med 90:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Morais Cabral JH, Lee A, Cohen SL, Chait BT, Li M, Mackinnon R (1998) Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 95:649–655

    Article  CAS  PubMed  Google Scholar 

  • Mortensen LS, Schmidt H, Farsi Z, Barrantes-Freer A, Rubio ME, Ufartes R, Eilers J, Sakaba T, Stuhmer W, Pardo LA (2015) K(V)10.1 opposes activity-dependent increase in Ca2+ influx into the presynaptic terminal of the parallel fibre-Purkinje cell synapse. J Physiol 593:181–196

    Article  CAS  PubMed  Google Scholar 

  • Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285:19173–19183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan B, Liu X, Zhou Y, Liu J, Zhang L, Wen J, Zhang X, Su XD, Wang YP (2010) From signal perception to signal transduction: ligand-induced dimeric switch of DctB sensory domain in solution. Mol Microbiol 75:1484–1494

    Article  CAS  PubMed  Google Scholar 

  • Ouadid-Ahidouch H, Ahidouch A (2008) K+ channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. J Membr Biol 221:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ouadid-Ahidouch H, Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N (2001) Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether. a-gogo K+ channel. Recept Channels 7:345–356

    CAS  PubMed  Google Scholar 

  • Ousingsawat J, Spitzner M, Puntheeranurak S, Terracciano L, Tornillo L, Bubendorf L, Kunzelmann K, Schreiber R (2007) Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 13:824–831

    Article  CAS  PubMed  Google Scholar 

  • Pardo LA, Contreras-Jurado C, Zientkowska M, Alves F, Stuhmer W (2005) Role of voltage-gated potassium channels in cancer. J Membr Biol 205:115–124

    Article  CAS  PubMed  Google Scholar 

  • Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W (1999) Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo LA, Stuhmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14:39–48

    Article  CAS  PubMed  Google Scholar 

  • Robertson GA, Warmke JM, Ganetzky B (1996) Potassium currents expressed from Drosophila and mouse eag cDNAs in Xenopus oocytes. Neuropharmacology 35:841–850

    Article  CAS  PubMed  Google Scholar 

  • Rouzaire-Dubois B, Dubois JM (1998) K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol 510(Pt 1):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbatini P, McCormick F (1999) Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J Biol Chem 274:24263–24269

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Schonherr R, Gessner G, Lober K, Heinemann SH (2002) Functional distinction of human EAG1 and EAG2 potassium channels. FEBS Lett 514:204–208

    Article  CAS  PubMed  Google Scholar 

  • Schonherr R, Lober K, Heinemann SH (2000) Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin. EMBO J 19:3263–3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons C, Rash LD, Crawford J, Ma L, Cristofori-Armstrong B, Miller D, Ru KL, Baillie GJ, Alanay Y, Jacquinet A, Debray FG, Verloes A, Shen J, Yesil G, Guler S, Yuksel A, Cleary JG, Grimmond SM, McGaughran J, King GF, Gabbett MT, Taft RJ (2015) Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nat Genet 47:73–77

    Article  CAS  PubMed  Google Scholar 

  • Stansfeld CE, Roper J, Ludwig J, Weseloh RM, Marsh SJ, Brown DA, Pongs O (1996) Elevation of intracellular calcium by muscarinic receptor activation induces a block of voltage-activated rat ether-a-go-go channels in a stably transfected cell line. Proc Natl Acad Sci USA 93:9910–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens L, Ju M, Wray, D (2009) Roles of surface residues of intracellular domains of heag potassium channels. Eur Biophys J 38:523–532

    Article  CAS  PubMed  Google Scholar 

  • Sun XX, Bostrom SL, Griffith LC (2009) Alternative splicing of the eag potassium channel gene in Drosophila generates a novel signal transduction scaffolding protein. Mol Cell Neurosci 40:338–343

    Article  CAS  PubMed  Google Scholar 

  • Sun XX, Hodge JJ, Zhou Y, Nguyen M, Griffith LC (2004) The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II. J Biol Chem 279:10206–10214

    Article  CAS  PubMed  Google Scholar 

  • Tang, X, Shao, J, Qin, X (2016) Crystal structure of the PAS domain of the hEAG potassium channel. Acta Crystallogr F Struct Biol Commun 72:578–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terlau H, Ludwig J, Steffan R, Pongs O, Stuhmer W, Heinemann SH (1996) Extracellular Mg2+ regulates activation of rat eag potassium channel. Pflugers Arch 432:301–312

    Article  CAS  PubMed  Google Scholar 

  • Thouta S, Sokolov S, Abe Y, Clark SJ, Cheng YM, Claydon TW (2014) Proline scan of the HERG channel S6 helix reveals the location of the intracellular pore gate. Biophys J 106:1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urrego D, Tomczak AP, Zahed F, Stuhmer W, Pardo LA (2014) Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci 369:20130094

    Article  PubMed  PubMed Central  Google Scholar 

  • Warmke J, Drysdale R, Ganetzky B (1991) A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science 252:1560–1562

    Article  CAS  PubMed  Google Scholar 

  • Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 91:3438–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber C, Mello de Queiroz F, Downie BR, Suckow A, Stuhmer W, Pardo LA (2006) Silencing the activity and proliferative properties of the human EagI potassium channel by RNA interference. J Biol Chem 281:13030–13037

    Article  CAS  PubMed  Google Scholar 

  • Whicher JR, MacKinnon R (2016) Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353:664–669

    Article  CAS  PubMed  Google Scholar 

  • Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107

    Article  CAS  PubMed  Google Scholar 

  • Wu, J, Zhong, DX, Wei, YJ, Wu, XY, Kang, LQ, Ding, ZQ (2014). Potassium channel ether a go-go1 Is aberrantly expressed in human liposarcoma and promotes tumorigenesis. Biomed Res Int. doi:10.1155/2014/345678

    Google Scholar 

  • Wu XY, Zhong DX, Gao Q, Zhai WL, Ding ZQ, Wu J (2013a) MicroRNA-34a inhibits human osteosarcoma proliferation by downregulating ether a go-go 1 expression. Int J Med Sci 10:676–682

  • Wu XY, Zhong DX, Lin B, Zhai WL, Ding ZQ, Wu J (2013b) p38 MAPK regulates the expression of ether a go-go potassium channel in human osteosarcoma cells. Radiol Int Soc Cell 47:42–49

  • Wynia-Smith SL, Gillian-Daniel AL, Satyshur KA, Robertson GA (2008) hERG gating microdomains defined by S6 mutagenesis and molecular modeling. J Gen Physiol 132:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–134

    Article  CAS  PubMed  Google Scholar 

  • Yoon AR, Gao R, Kaul Z, Choi IK, Ryu J, Noble JR, Kato Y, Saito S, Hirano T, Ishii T, Reddel RR, Yun CO, Kaul SC, Wadhwa R (2011) MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3′ untranslated region. Nucleic Acids Res 39:8078–8091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YY, Yue JB, Che H, Sun HY, Tse HF, Li GR (2014) BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J Cell Physiol 229:202–212

    Article  CAS  PubMed  Google Scholar 

  • Ziechner U, Schonherr R, Born AK, Gavrilova-Ruch O, Glaser RW, Malesevic M, Kullertz G, Heinemann SH (2006) Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N- and C-termini. FEBS J 273:1074–1086

    Article  CAS  PubMed  Google Scholar 

  • Zuhur, SS, Ozkayalar, H, Kuzu, I, Ozturk, FY, Elbuken, G, Tanik, C, Altuntas, Y (2015). Expression of voltage gated potassium channel ether a go-go in pituitary adenomas of patients with acromegaly: a preliminary study. Neuroendocrinol Lett 36:165–170

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Fund for Distinguished Young Scholars of the Hebei Province of China (Grant No. C2015202340 to HA), the Foundation for Outstanding Talents of Hebei Province of China (Grant No. C201400305 to HA), and the National Natural Science Foundation of China (Grant Nos. 11247010 to HA, 11475053 to YZ, 31400711 to YC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailong An or Yong Zhan.

Additional information

Xuzhao Wang and Yafei Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, Y., Zhang, Y. et al. Eag1 Voltage-Dependent Potassium Channels: Structure, Electrophysiological Characteristics, and Function in Cancer. J Membrane Biol 250, 123–132 (2017). https://doi.org/10.1007/s00232-016-9944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9944-8

Keywords

Navigation