Skip to main content

Advertisement

Log in

Role of Voltage-gated Potassium Channels in Cancer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Ion channels are being associated with a growing number of diseases including cancer. This overview summarizes data on voltage-gated potassium channels (VGKCs) that exhibit oncogenic properties: ether-à-go-go type 1 (Eag1). Normally, Eag1 is expressed almost exclusively in tissue of neural origin, but its ectopic expression leads to uncontrolled proliferation, while inhibition of Eag1 expression produces a concomitant reduction in proliferation. Specific monoclonal antibodies against Eag1 recognize an epitope in over 80% of human tumors of diverse origins, endowing it with diagnostic and therapeutic potential. Eag1 also possesses unique electrophysiological properties that simplify its identification. This is particularly important, as specific blockers of Eag1 currents are not available. Molecular imaging of Eag1 in live tumor models has been accomplished with dye-tagged antibodies using 3-D imaging techniques in the near-infrared spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Abdul M., Hoosein N. 2002a. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 186:99–105

    Article  CAS  ISI  Google Scholar 

  • Abdul M., Hoosein N. 2002b. Voltage-gated potassium ion channels in colon cancer. Oncol. Rep. 9:961–964

    CAS  Google Scholar 

  • Abdul M., Hoosein N. 2002c. Voltage-gated potassium ion channels in colon cancer. Oncol. Rep. 9:961–964

    CAS  Google Scholar 

  • Abdul M., Santo A., Hoosein N. 2003. Activity of potassium channel-blockers in breast cancer. Anticancer Res. 23:3347–3351

    PubMed  CAS  ISI  Google Scholar 

  • Amigorena S., Choquet D., Teillaud J.L., Korn H., Fridman W.H. 1990. Ion channel blockers inhibit B cell activation at a precise stage of the G1 phase of the cell cycle. Possible involvement of K+ channels. J. Immunol. 144:2038–2045

    PubMed  CAS  Google Scholar 

  • Arcangeli A., Bianchi L., Becchetti A., Faravelli L., Coronnello M., Mini E., Olivotto M., Wanke E. 1995. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J. Physiol. 489:455–471

    PubMed  CAS  Google Scholar 

  • Arcangeli A., Rosati B., Cherubini A., Crociani O., Fontana L., Ziller C., Wanke E., Olivotto M. 1997. HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. Eur. J. Neurosci. 9:2596–2604

    PubMed  CAS  Google Scholar 

  • Artym V.V., Petty H.R. 2002. Mol. proximity of Kv1.3 voltage-gated potassium channels and β-integrins on the plasma membrane of melanoma cells: Effects of cell adherence and channel blockers. J. Gen. Physiol. 120:29–37

    Article  PubMed  CAS  Google Scholar 

  • Barajas Farias L.M., Bermúdez Ocaña D., Díaz L., Larrea F., Avila-Chávez E., Cadena A., Hinojosa L.M., Lara G., Villanueva L.A., Vargas C., Hernández-Gallegos E., Camacho-Arroyo I., Dueñas-González A., Pérez-Cárdenas E., Pardo L.A., Morales A., Taja-Chayeb L., Escamilla J., Sánchez-Peña C., Camacho J. 2004. Ether á go-go potassium channels as Human cervical cancer markers. Cancer Res. 64:6996–7001

    Google Scholar 

  • Bianchi L., Wible B., Arcangeli A., Taglialatela M., Morra F., Castaldo P., Crociani O., Rosati B., Faravelli L., Olivotto M., Wanke E. 1998. HERG encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res. 58:815–22

    Google Scholar 

  • Brüggemann A., Pardo L.A., Stühmer W., Pongs O. 1993. Ether-à-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature 365:445–448

    PubMed  Google Scholar 

  • Brüggemann A., Stühmer W., Pardo L.A. 1997. Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 194:537–542

    PubMed  Google Scholar 

  • Cabral J.H.M., Lee A., Cohen S.L., Chait B.T., Li M., Mackinnon R. 1998. Crystal structure and functional analysis of the HERG potassium channel N terminus – a eukaryotic PAS domain. Cell 95:649–655

    Article  ISI  Google Scholar 

  • Cahalan M.D., Wulff H., Chandy K.G. 2001. Molecular properties and physiological roles of ion channels in the immune system. J. Clin. Immunol. 21:235–252

    Article  PubMed  CAS  Google Scholar 

  • Camacho J., Sánchez A., Stühmer W., Pardo L.A. 2000. Cytoskeletal interactions determine the electrophysiological properties of human EAG potassium channels. Pfluegers Arch. 441:167–174

    Article  CAS  Google Scholar 

  • Chandy K.G., Wulff H., Beeton C., Pennington M., Gutman G.A., Cahalan M.D. 2004. K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25:280–289

    CAS  PubMed  Google Scholar 

  • Chapman C.G., Meadows H.J., Godden R.J., Campbell D.A., Duckworth M., Kelsell R.E., Murdock P.R., Randall A.D., Rennie G.I., Gloger I.S. 2000. Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Mol. Brain Res. 82:74–83

    Article  PubMed  CAS  Google Scholar 

  • Cherubini A., Taddei G.L., Crociani O., Paglierani M., Buccoliero A.M., Fontana L., Noci I., Borri P., Borrani E., Giachi M., Becchetti A., Rosati B., Wanke E., Olivotto M., Arcangeli A. 2000. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Brit. J. Cancer 83:1722–1729

    PubMed  CAS  Google Scholar 

  • Chittajallu R., Chen Y., Wang H., Yuan X., Ghiani C.A., Heckman T., McBain C.J., Gallo V. 2002. Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc. Natl. Acad. Sci. USA 99:2350–2355

    Article  PubMed  CAS  Google Scholar 

  • Chiu S.Y., Wilson G.F. 1989. The role of potassium channels in Schwann cell proliferation in Wallerian degeneration of explant rabbit sciatic nerves. J. Physiol. 408:199–222

    PubMed  CAS  Google Scholar 

  • Cole K.S., Moore J.W. 1960. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1:1–4

    Article  PubMed  CAS  Google Scholar 

  • Conti M. 2004. Targeting K+ channels for cancer therapy. J. Exp. Ther. Oncol. 4:161–166

    PubMed  CAS  Google Scholar 

  • Crociani O., Guasti L., Balzi M., Becchetti A., Wanke E., Olivotto M., Wymore R.S., Arcangeli A. 2003. Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J. Biol. Chem. 278:2947–2955

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey T.E., Chandy K.G., Gupta S., Cahalan M.D. 1984. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468

    Article  PubMed  CAS  ISI  Google Scholar 

  • DeCoursey T.E., Kim S.Y., Silver M.R., Quandt F.N. 1996. Ion channel expression in PMA-differentiated human THP-1 macrophages. J. Membrane Biol. 152:141–157

    CAS  Google Scholar 

  • Deeken R., Ivashikina N., Czirjak T., Philippar K., Becker D., Ache P., Hedrich R. 2003. Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3. Plant J. 34:778–87

    Article  PubMed  CAS  ISI  Google Scholar 

  • Dreyer I., Poree F., Schneider A., Mittelstadt J., Bertl A., Sentenac H., Thibaud J.B., Mueller-Roeber B. 2004. Assembly of plant Shaker-like K-out channels requires two distinct sites of the channel alpha-subunit. Biophys. J. 87:858–872

    Article  PubMed  CAS  Google Scholar 

  • Faehling M., Koch E.D., Raithel J., Trischler G., Waltenberger J. 2001. Vascular endothelial growth factor-a activates Ca2+-activated K+ channels in human endothelial cells in culture. Int. J. Biochem. Cell Biol. 33:337–346

    Article  PubMed  CAS  Google Scholar 

  • Faravelli L., Arcangeli A., Olivotto M., Wanke E. 1996. A HERG-like K+ channel in rat F-11 DRG cell line: pharmacological identification and biophysical characterization. J. Physiol. 496:13–23

    PubMed  CAS  Google Scholar 

  • Frangioni J.V. 2003. In vivo near-infrared fluorescence imaging. Curr. Op. Chem. Biol. 7:626–634

    CAS  Google Scholar 

  • Fraser S.P., Grimes J.A., Diss J.K.J., Stewart D., Dolly J.O., Djamgoz M.B.A. 2003. Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation. Pfluegers Arch. 446:559–571

    Article  CAS  Google Scholar 

  • García-Ferreiro R.E., Kerschensteiner D., Major F., Monje F., Stühmer W., Pardo L.A. 2004. Mechanism of block of hEag1 K+ channels by imipramine and astemizole. J. Gen. Physiol. 124:301–317

    PubMed  Google Scholar 

  • García-Sanz N., Fernandez-Carvajal A., Morenilla-Palao C., Planells-Cases R., Fajardo-Sánchez E., Fernández-Ballester G., Ferrer-Montiel A. 2004. Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J. Neurosci. 24:5307–5314

    PubMed  Google Scholar 

  • Gollapudi S.V., Vayuvegula B.S., Thadepalli H., Gupta S. 1988. Effect of K+ channel blockers on anti-immunoglobulin-induced murine B cell proliferation. J. Clin. Lab. Immunol. 27:121–5

    PubMed  CAS  Google Scholar 

  • Hoffman S., Gopalakrishna R., Gundimeda U., Murata T., Spee C., Ryan S.J., Hinton D.R. 1998. Verapamil inhibits proliferation, migration and protein kinase C activity in human retinal pigment epithelial cells. Exp. Eye Res. 67:45–52

    Article  PubMed  CAS  Google Scholar 

  • Jenke M., Sánchez A., Monje F., Stühmer W., Weseloh R.M., Pardo L.A. 2003. C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J. 22:395–403

    Article  PubMed  CAS  ISI  Google Scholar 

  • Ju M., Wray D. 2002. Mol. identification and characterisation of the human eag2 potassium channel. FEBS Lett. 524:204–210

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kanki H., Kupershmidt S., Yang T., Wells S., Roden D.M. 2004. A structural fl requirement for processing the cardiac K+ channel KCNQ1. J. Biol. Chem. 279:33976–33983

    Article  PubMed  CAS  Google Scholar 

  • Kaplan W.D., Trout W.E.D. 1969. The behavior of four neurological mutants of Drosophila. Genet. 61:399–409

    CAS  ISI  Google Scholar 

  • Kayser S.T., Ulrich H., Schaller H.C. 1998. Involvement of a gardos-type potassium channel in head activator-induced mitosis of BON cells. Eur. J. Cell Biol. 76:119–124

    PubMed  CAS  Google Scholar 

  • Kim Y., Bang H., Kim D. 2000. TASK-3, a new member of the tandem pore K+ channel family. J. Biol. Chem. 275:9340–9347

    PubMed  CAS  Google Scholar 

  • Kim Y., Silver M.R., DeCoursey T.E. 1996. Ion channels in human THP-1 monocytes. J. Membrane Biol. 152:117–130

    Article  CAS  Google Scholar 

  • Lastraioli E., Guasti L., Crociani O., Polvani S., Hofmann G., Witchel H., Bencini L., Calistri M., Messerini L., Scatizzi M., Moretti R., Wanke E., Olivotto M., Mugnai G., Arcangeli A. 2004. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res. 64:606–611

    Article  PubMed  CAS  ISI  Google Scholar 

  • Lee S.C., Sabath D.E., Deutsch C., Prystowsky M.B. 1986. Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. J. Cell Biol 102:12001–12008

    Article  Google Scholar 

  • Liu S.I., Chi C.W., Lui W.Y., Mok K.T., Wu C.W., Wu S.N. 1998. Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochim. Biophys. Acta 1368:256–266

    PubMed  CAS  Google Scholar 

  • Ludwig J., Owen D., Pongs O. 1997. Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-à-go-go potassium channel. EMBO J. 16:6337–6345

    Article  PubMed  CAS  ISI  Google Scholar 

  • Ludwig J., Terlau H., Wunder F., Brüggemann A., Pardo L.A., Marquardt A., Stühmer W., Pongs O. 1994. Functional expression of a rat homologue of the voltage gated ether á go-go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart. EMBOJ. 13:4451–4458

    CAS  Google Scholar 

  • Malhi H., Irani A.N., Rajvanshi P., Suadicani S.O., Spray D.C., McDonald T.V., Gupta S. 2000. K-ATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines — Implications for liver growth control and potential therapeutic targeting. J. Biol. Chem. 275:26050–26057

    Article  PubMed  CAS  Google Scholar 

  • Mauro T., Dixon D.B., Komuves L., Hanley K., Pappone P.A. 1997. Keratinocyte K+ channels mediate Ca2+-induced differentiation. J. Invest. Dermatol. 108:864–870

    Article  PubMed  CAS  Google Scholar 

  • Meyer R., Schönherr R., Gavrilova-Ruch O., Wohlrab W., Heinemann S.H. 1999. Identification of ether a go-go and calcium-activated potassium channels in human melanoma cells. J. Membrane Biol. 171:107–115

    Article  CAS  Google Scholar 

  • Molina M.L., Encinar J.A., Barrera F.N., Fernandez-Ballester G., Riquelme G., González-Ros J.M. 2004. Influence of C-terminal protein domains and protein-lipid interactions on tetramerization and stability of the potassium channel KcsA. Biochemistry 43:14924–14931

    Article  PubMed  CAS  ISI  Google Scholar 

  • Monen S.H., Schmidt P.H., Wondergem R. 1998. Membrane potassium channels and human bladder tumor cells. I. Electrical properties. J. Membrane Biol. 161:247–256

    Article  CAS  Google Scholar 

  • Mu D., Chen L.Y., Zhang X.P., See L.H., Koch C.M., Yen C., Tong J.J., Spiegel L., Nguyen K.C.Q., Servoss A., Peng Y., Pei L., Marks J.R., Lowe S., Hoey T., Jan L.Y., McCombie W.R., Wigler M.H., Powers S. 2003. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302

    Article  PubMed  CAS  ISI  Google Scholar 

  • Napp J., Monje F., Stühmer W., Pardo L.A. 2005. Glycosylation of Eag1 (Kv10.1) potassium channels. Intracellular trafficking and functional consequences. 2005 J. Biol. Chem. 280:29506–29512

    Article  PubMed  CAS  Google Scholar 

  • Nilius B., Wohlrab W. 1992. Potassium channels and regulation of proliferation of human melanoma cells. J. Physiol. 445:537–548

    PubMed  CAS  Google Scholar 

  • Occhiodoro T., Bernheim L., Liu J.H., Bijlenga P., Sinnreich M., Bader C.R., Fischer-Lougheed J. 1998. Cloning of a human ether-a-go-go potassium channel expressed in myoblasts at the onset of fusion. FEBS Lett. 434:177–182

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pancrazio J.J., Tabbara I.A., Kim Y.I. 1993. Voltage-activated K+ conductance and cell proliferation in small-cell lung cancer. Anticancer Res. 13:1231–1234

    PubMed  CAS  ISI  Google Scholar 

  • Pappas C.A., Ritchie J.M. 1998. Effect of specific ion channel blockers on cultured Schwann cell proliferation. Glia 22:113–120

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pappas C.A., Ullrich N., Sontheimer H. 1994. Reduction of glial proliferation by K+ channel blockers is mediated by changes in pHi. Neuroreport 6:193–196

    PubMed  CAS  ISI  Google Scholar 

  • Pappone P.A., Ortiz-Miranda S.I. 1993. Blockers of voltage-gated K channels inhibit proliferation of cultured brown fat cells. Am. J. Physiol. 264:C1014–C1019

    PubMed  CAS  Google Scholar 

  • Pardo L.A. 2004. Voltage-gated potassium channels in cell proliferation. Physiol. 19:285–292

    CAS  ISI  Google Scholar 

  • Pardo L.A., Brüggemann A., Camacho J., Stühmer W. 1998. Cell cycle-related changes in the conducting properties of r-eag K+ channels. J. Cell Biol. 143:767–775

    Article  PubMed  CAS  Google Scholar 

  • Pardo L.A., del Camino D., Sánchez A., Alves F., Brüggemann A., Beckh S., Stühmer W. 1999. Oncogenic potential of EAG K+ channels. EMBO J. 18:5540–5547

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pillozzi S., Brizzi M.F., Balzi M., Crociani O., Cherubini A., Guasti L., Bartolozzi B., Becchetti A., Wanke E., Bernabei P.A., Olivotto M., Pegoraro L., Arcangeli A. 2002. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 16:1791–1798

    Article  PubMed  CAS  ISI  Google Scholar 

  • Preussat K., Beetz C., Schrey M., Kraft R., Wolfl S., Kalff R., Patt S. 2003. Expression of voltage-gated potassium channels Kv1.3 and Kv1.5 in human gliomas. Neurosci. Lett 346:33–36

    PubMed  CAS  Google Scholar 

  • Price M., Lee S.C., Deutsch C. 1989. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 86:10171–10175

    PubMed  CAS  Google Scholar 

  • Puro D.G., Roberge F., Chan C.C. 1989. Retinal glial cell proliferation and ion channels: a possible link Invest. Ophthalmol. Vis. Sci. 30:521–529

    CAS  Google Scholar 

  • Rajan S., Wischmeyer E., Liu G.X., Muller R.P., Daut J., Karschin A., Derst C. 2000. TASK-3, a novel tandem pore domain acid-sensitive K+ channel — An extracellular histidine as pH sensor. J. Biol. Chem. 275:16650–16657

    PubMed  CAS  Google Scholar 

  • Roderick C., Reinach P.S., Wang L., Lu L. 2003. Modulation of rabbit corneal epithelial cell proliferation by growth factor-regulated K+ channel activity. J. Membrane Biol 196:41–50

    Article  CAS  Google Scholar 

  • Roncarati R., Decimo I., Fumagalli G. 2005. Assembly and trafficking of human small conductance Ca2+-activated K+ channel SK3 are governed by different molecular domains. Mol. Cell. Neurosci. 28:314–325

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois B., Benoit E., Dubois J.M. Eds. 2002. Ion Channels and Physiopathologies of Nerve Conduction and Cell Proliferation. Res. Signpost, Trivandrum, India

    Google Scholar 

  • Rouzaire-Dubois B., Dubois J.M. 1991. A quantitative analysis of the role of K+ channels in mitogenesis of neuroblastoma cells. Cell. Signal. 3:333–339

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois B., Milandri J.B., Bostel S., Dubois J.M. 2000. Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pfluegers Arch. 440:881–888

    Article  CAS  Google Scholar 

  • Roy M.L., Dumaine R., Brown A.M. 1996. HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation 94:817–823

    PubMed  CAS  ISI  Google Scholar 

  • Sanguinetti M.C., Jiang C., Curran M.E., Keating M.T. 1995. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  PubMed  CAS  ISI  Google Scholar 

  • Schönherr R., Gessner G., Lober K., Heinemann S.H. 2002. Functional distinction of human EAG1 and EAG2 potassium channels. FEBS Lett. 514:204–208

    PubMed  Google Scholar 

  • Schönherr R., Lober K., Heinemann S.H. 2000. Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin. EMBO J. 19:3263–3271

    PubMed  Google Scholar 

  • Shah K. 2005. Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol. Ther. 4:518–523S

    PubMed  CAS  Google Scholar 

  • Sidell N., Schlichter L. 1986. Retinoic acid blocks potassium channels in human lymphocytes. Biochem. Biophysc Res. Comm. 138:560–7

    CAS  Google Scholar 

  • Skryma R.N., Prevarskaya N.B., Dufy-Barbe L., Odessa M.F., Audin J., Dufy B. 1997. Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: Involvment in cell proliferation. Prostate 33:112–122

    Article  PubMed  CAS  ISI  Google Scholar 

  • Smith G.A.M., Tsui H.W., Newell E.W., Jiang X.P., Zhu X.P., Tsui F.W.L., Schlichter L.C. 2002. Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells. J. Biol. Chem. 277:18528–18534

    PubMed  CAS  Google Scholar 

  • Snyders D.J., Chaudhary A. 1996. High affinity open channel block by dofetilide of HERG expressed in a human cell line. Mol. Pharmacol. 49:949–955

    PubMed  CAS  Google Scholar 

  • Spector P.S., Curran M.E., Keating M.T., Sanguinetti M.C. 1996. Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ Res 78:499–503

    PubMed  CAS  Google Scholar 

  • Stansfeld C.E., Roper J., Ludwig J., Weseloh R.M., Marsh S.J., Brown D.A., Pongs O. 1996. Elevation of intracellular calcium by muscarinic receptor activation induces a block of voltage-activated rat ether-a-go-go channels in a stably transfected cell line. Proc. Natl. Acad. Sci. USA 93:9910–9914

    Article  PubMed  CAS  Google Scholar 

  • Stocker M. 2004. Ca2+-activated K+ channels: Molecular determinants and function of the SK family. Nature Rev. Neurosci. 5:758–770

    CAS  Google Scholar 

  • Stühmer W., Ruppersberg J., Schroeter K., Sakmann B., Stocker M., Giese K., Perschke A., Baumann A., Pongs O. 1989. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J.8:3235–3244

    PubMed  Google Scholar 

  • Suessbrich H., Waldegger S., Lang F., Busch A.E. 1996. Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Left.385:77–80

    CAS  Google Scholar 

  • Terlau H., Ludwig J., Steffan R., Pongs O., Stühmer W., Heinemann S.H. 1996. Extracellular Mg2+ regulates activation of rat eag potassium channel. Pfluegers Arch. 432:301–312

    Article  CAS  Google Scholar 

  • Trudeau M.C., Warmke J.W., Ganetzky B., Robertson G.A. 1995. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    PubMed  CAS  ISI  Google Scholar 

  • Utermark T., Alekov A., Lerche H., Abramowski V., Giovannini M., Haneman C.O. 2003. Quinidine impairs proliferation of neurofibromatosis type 2-deficient human malignant mesothelioma cells. Cancer 97:1955–19962

    Article  PubMed  CAS  ISI  Google Scholar 

  • Vaur S., Bressonbepoldin L., Dufy B., Tuffet S., Dufybarbe L. 1998. Potassium channel inhibition reduces cell proliferation in the GH3 pituitary cell line. J. Cell. Physiol. 177:402–410

    Article  PubMed  CAS  Google Scholar 

  • Wang L., Xu B., White R.E., Lu L. 1997. Growth factor-mediated K+ channel activity associated with human myeloblastic ML-1 cell proliferation. Am. J. Physiol. 42:C1657–C1665

    Google Scholar 

  • Wang Y.F., Jia H., Walker A.M., Cukierman S. 1992. K-current mediation of prolactin-induced proliferation of malignant (Nb2) lymphocytes. J. Cell. Physiol. 152:185–189

    Article  PubMed  CAS  Google Scholar 

  • Warmke J., Drysdale R., Ganetzky B. 1991. A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science 252:1560–1562

    PubMed  CAS  ISI  Google Scholar 

  • Warmke J.W., Ganetzki B. 1994. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 91:3438–3442

    PubMed  CAS  Google Scholar 

  • Wickenden A.D. 2002. K+ channels as therapeutic drug targets. Pharmacol. Therap. 94:157–182

    Article  CAS  Google Scholar 

  • Wilson S.M., Pappone P.A. 1999. P2 receptor modulation of voltage-gated potassium currents in brown adipocytes. J. Gen. Physiol. 113:125–138

    Article  PubMed  CAS  Google Scholar 

  • Wohlrab D., Lebek S., Kruger T., Reichel H. 2002. Influence of ion channels on the proliferation of human chondrocytes. Biorheology 39:55–61

    PubMed  CAS  ISI  Google Scholar 

  • Wohlrab D., Markwardt F. 1999. Influence of ion channel blockers on proliferation and free intracellular Ca2+ concentration of human keratinocytes. Skin Pharmacol. Physiol. 12:257–265

    Article  CAS  Google Scholar 

  • Wondergem R., Cregan M., Strickler L., Miller R., Suttles J. 1998. Membrane potassium channels and human bladder tumor cells: II. Growth properties. J. Membrane Biol. 161:257–262

    Article  CAS  Google Scholar 

  • Woodfork K.A., Wonderlin W.F., Peterson V.A., Strobl J.S. 1995. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J. Cell Physiol. 62:163–171

    Google Scholar 

  • Xu B., Wilson B.A., Lu L. 1996. Induction of human myeloblastic ML-1 cell G 1 arrest by suppression of K+ channel activity. Am. J. Physiol. 40:C2037–C2044

    Google Scholar 

  • Xu D.Z., Wang L., Dai W., Lu L. 1999. A requirement for K+-channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells. Blood 94:139–145

    PubMed  CAS  ISI  Google Scholar 

  • Zhong Y., Wu C.-F. 1991. Alteration of four identified K+-currents in Drosophila muscle by mutations in eag. Science 252:1562–1564

    PubMed  CAS  ISI  Google Scholar 

  • Zhou Q., Kwan H.Y., Chan H.S.C., Jiang J.L., Tarn S.C., Yao X.Q. 2003. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int. J. Mol. Med. 11:261–266

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Victor Diaz, Barbara Scheufler and Johanna Widera for expert technical assistance. Thanks also to Bryan Downie and Synnöve Beckh for critical comments on the manuscript. The work described here was financed in part by a Tandem Grant for collaborations between the Medical School of Göttingen and the Max Planck Institute of Experimental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.A. Pardo.

Additional information

Abbreviations: EAG: Ether-à-go-go, VGKCs: voltage-gated potassium channels

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, L., Contreras-Jurado, C., Zientkowska, M. et al. Role of Voltage-gated Potassium Channels in Cancer. J Membrane Biol 205, 115–124 (2005). https://doi.org/10.1007/s00232-005-0776-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0776-1

Keywords

Navigation