Skip to main content

Advertisement

Log in

K+ Channel Expression in Human Breast Cancer Cells: Involvement in Cell Cycle Regulation and Carcinogenesis

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

K+ channels are a most diverse class of ion channels in the plasma membrane and are distributed widely throughout a variety of cells including cancer cells. Evidence has been accumulating from fundamental studies indicating that tumour cells possess various types of K+ channels and that these K+ channels play important roles in regulating tumor cell proliferation, cell cycle progression and apoptosis. Moreover, a significant increase in K+ channel expression has been correlated with tumorigenesis, suggesting the possibility of using these proteins as transformation markers and perhaps reducing the tumor growth rate by selectively inhibiting their functional activity. Significant progress has been made in defining the properties of breast K+ channels, including their biophysical and pharmacological properties and distribution throughout different phases of the cell cycle in breast cell line MCF-7. This review aims to provide a comprehensive overview of the current state of research into K+ channels/currents in breast cancer cells. The possible mechanisms by which K+ channels affect tumor cell proliferation and cell cycle progression are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul M, Santo A, Hoosein N (2003) Activity of potassium channel-blockers in breast cancer. Anticancer Res 23:3347–3351

    PubMed  CAS  Google Scholar 

  • Bachs O, Agell N, Carafoli E (1992) Calcium and calmodulin function in the cell nucleus. Biochim Biophys Acta 1113:259–270

    PubMed  CAS  Google Scholar 

  • Borowiec AS, Hague F, Harir N, Guenin S, Guerineau F, Gouilleux F, Roudbaraki M, Lassoued K, Ouadid-Ahidouch H (2007) IGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation. J Cell Physiol 212:690–701

    Article  PubMed  CAS  Google Scholar 

  • Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA, Heckman T, McBain CJ, Gallo V (2002) Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci USA 99:2350–2355

    Article  PubMed  CAS  Google Scholar 

  • Czarnecki A, Dufy-Barbe L, Huet S, Odessa MF, Bresson-Bepoldin L (2003) Potassium channel expression level is dependent on the proliferation state in the GH3 pituitary cell line. Am J Physiol 284:C1054–C1064

    CAS  Google Scholar 

  • Cory JG, Carter GL, Karl RC (1987) Calcium ion-dependent proliferation of L1210 cells in culture. Biochem Biophys Res Commun 145:556–562

    Article  PubMed  CAS  Google Scholar 

  • Etindi R, Manni A (1992) TGFα and IGF-I effects on calcium ion transients in human breast cancer cells. Cancer Lett 66:131–137

    Article  PubMed  CAS  Google Scholar 

  • Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa. J Biol Chem 274:5746–5754

    Article  PubMed  CAS  Google Scholar 

  • Gamper N, Fillon S, Huber SM, Feng Y, Kobayashi T, Cohen P, Lang F (2002) IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pfluegers Arch 443:625–634

    Article  CAS  Google Scholar 

  • Gerlach AC, Gangopadhyay NN, Devor DC (2000) Kinase-dependent regulation of the intermediate conductance, calcium-activated potassium channel, hIKCa. J Biol Chem 275:585–598

    Article  PubMed  CAS  Google Scholar 

  • Guo TB, Lu J, Li T, Lu Z, Xu G, Xu M, Lu L, Dai W (2005) Insulin-activated, K+-channel-sensitive Akt pathway is primary mediator of ML-1 cell proliferation. Am J Physiol 289:C257–C263

    Article  CAS  Google Scholar 

  • Hazelton B, Mitchell B, Tupper J (1979) Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. J Cell Biol 83:487–498

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlein B, Weseloh RM, Mello de Queiroz F, Knotgen H, Sanchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Radzun HJ, Stuhmer W, Pardo LA (2006) Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 5:41–51

    Article  PubMed  CAS  Google Scholar 

  • Keen JE, Khawaled R, Farrens DL, Neelands T, Rivard A, Bond CT, Janowsky A, Fakler B, Adelman JP, Maylie J (1999) Domains responsible for constitutive and Ca2+ dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. J Neurosci 19:8830–8838

    PubMed  CAS  Google Scholar 

  • Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC (1999) hSK4/hIKCa, a calmodulin-binding KCa channels in human T lymphocytes. J Biol Chem 274:14838–14849

    Article  PubMed  CAS  Google Scholar 

  • Klimatcheva E, Wonderlin WF (1999) An ATP-sensitive K+ current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. J Membr Biol 171:35–46

    Article  PubMed  CAS  Google Scholar 

  • Koledova VV, Khalil RA (2006) Ca2+, calmodulin, and cyclins in vascular smooth muscle cell cycle. Circ Res 98:1240–1243

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Means AR (1993) Regulation of the cell cycle by calcium and calmodulin. Endocr Rev 14:40–58

    Article  PubMed  CAS  Google Scholar 

  • Marino AA, Iliev IG, Schwalke MA, Gonzalez E, Marler KC, Flanagan CA (1994) Association between cell membrane potential and breast cancer. Tumour Biol 15:82–89

    PubMed  CAS  Google Scholar 

  • Martin-Castellanos C, Moreno S (1996) Regulation of G1 progression in fission yeast by the rum1+ gene product. Prog Cell Cycle Res 2:29–35

    PubMed  CAS  Google Scholar 

  • Meyer R, Schonherr R, Gavrilova-Ruch O, Wohlrab W, Heinemann SH (1999) Identification of ether à go-go and calcium-activated potassium channels in human melanoma cells. J Membr Biol 171:107–115

    Article  PubMed  CAS  Google Scholar 

  • Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KCQ, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S (2003) Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Wohlrab W (1992) Potassium channels and regulation of proliferation of human melanoma cells. J Physiol 445:537–548

    PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H, Chaussade F, Roudbaraki M, Slomianny C, Dewailly E, Delcourt P, Prevarskaya N (2000) Kv1.1 K+ channels identification in human breast carcinoma cells: involvement in cell proliferation. Biochem Biophys Res Commun 278:272–277

    Article  PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H, LeBourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevaskaya N (2001) Changes in the K+ current density of MCF-7 cells during progression through the cell-cycle: possible involvement of a h-ether à go-go K+ channel. Receptors Channels 7:345–356

    PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004a) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol 287:C125–C134

    Google Scholar 

  • Ouadid-Ahidouch H, Roudbaraki M, Ahidouch A, Delcourt P, Prevarskaya N (2004b) Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells. Biochem Biophys Res Commun 316:244–251

    Google Scholar 

  • Pardo LA, Del Camino D, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W (1999) Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547

    Article  PubMed  CAS  Google Scholar 

  • Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology 19:285–292

    Article  PubMed  CAS  Google Scholar 

  • Pardo LA, Contreras-Jurado C, Zientkowska M, Alves F, Stuhmer W (2005) Role of voltage-gated potassium channels in cancer. J Membr Biol 205:115–124

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino M, Pellgrini M (1998) Modulation of Ca2+-activated K+ channels of human erythrocytes by endogenous cAMP-dependent protein kinase. Pfluegers Arch 436:749–756

    Article  CAS  Google Scholar 

  • Roch B, Baro I, Hongre AS, Escande D (1995) ATP-sensitive K+ channels regulated by intracellular Ca2+ and phosphorylation in normal (T84) and cystic fibrosis (CFPAC-1) epithelial cells. Pfluegers Arch 429:355–363

    Article  CAS  Google Scholar 

  • Roderick C, Reinach PS, Wang L, Lu L (2003) Modulation of rabbit corneal epithelial cell proliferation by growth factor-regulated K+ channel activity. J Membr Biol 196:41–50

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Mora OG, LaHair MM, McCubrey JA, Franklin RA (2005) Calcium/calmodulin-dependent kinase I and calcium/calmodulin-dependent kinase kinase participate in the control of cell cycle progression in MCF-7 human breast cancer cells. Cancer Res 65:5408–5416

    Article  PubMed  CAS  Google Scholar 

  • Roger S, Potier M, Vandier C, Le Guennec JY, Besson P (2004) Description and role in proliferation of iberiotoxin-sensitive currents in different human mammary epithelial normal and cancerous cells. Biochim Biophys Acta 1667:190–199

    Article  PubMed  CAS  Google Scholar 

  • Santella L, Ercolano E, Nusco GA (2005) The cell cycle: a new entry in the field of Ca2+ signaling. Cell Mol Life Sci 62:2405–2413

    Article  PubMed  CAS  Google Scholar 

  • Schrönherr R, Lober K, Heinemann H (2000) Inhibition of human ether à go-go potassium channels by Ca2+/calmodulin. EMBO J 19:3363–3371

    Google Scholar 

  • Strobl JS, Wonderlin WF, Flynn DC (1995) Mitogenic signal transduction in human breast cancer cells. Gen Pharmacol 26:1643–1649

    PubMed  CAS  Google Scholar 

  • Stringer BK, Cooper AG, Shepard SB (2001) Overexpression of the G-protein inwardly rectifying potassium channel 1 (GIRK1) in primary breast carcinomas correlates with axillary lymph node metastasis. Cancer Res 61:582–588

    PubMed  CAS  Google Scholar 

  • Stuhmer W, Alves F, Hartung F, Zientkowska M, Pardo LA (2006) Potassium channels as tumour markers. FEBS Lett 580:2850–2852

    Article  PubMed  CAS  Google Scholar 

  • Tupper JT, Kaufman L, Bodine PV (1980) Related effects of calcium and serum on the G1 phase of the human W138 fibroblast. J Cell Physiol 104:97–103

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Melkoumian Z, Woodfork KA, Cather C, Davidson AG,Wonderlin WF, Strobl JS (1998) Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J Cell Physiol 176:456–464

    Article  PubMed  CAS  Google Scholar 

  • Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pfluegers Arch 448:274–286

    Article  CAS  Google Scholar 

  • Wegman EA, Young JA, Cook DI (1991) A 23-pS calcium-activated potassium channel in MCF-7 human breast carcinoma cells: an apparent correlation of channel incidence with the rate of cell proliferation. Pfluegers Arch 417:562–570

    Article  CAS  Google Scholar 

  • Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107

    Article  PubMed  CAS  Google Scholar 

  • Wonderlin WF, Woodfork KA, Strobl JS (1995) Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 165:77–185

    Article  Google Scholar 

  • Woodfork KA, Wonderlin WF, Strobl JS (1995) Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol 162:163–171

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Wang L, Dai W, Lu L (1999) A requirement for K+-channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells. Blood 94:139–145

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by le Ministère de l’Education Nationale et de la Recherche, la Ligue Nationale Contre le Cancer, l’Association pour la Recherche pour le Cancer and la Région Picardie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halima Ouadid-Ahidouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouadid-Ahidouch, H., Ahidouch, A. K+ Channel Expression in Human Breast Cancer Cells: Involvement in Cell Cycle Regulation and Carcinogenesis. J Membrane Biol 221, 1–6 (2008). https://doi.org/10.1007/s00232-007-9080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9080-6

Keywords

Navigation