Skip to main content
Log in

Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Amphipols are a class of polymeric surfactants that can stabilize membrane proteins in aqueous solutions as compared to detergents. A8-35, the best-characterized amphipol to date, is composed of a polyacrylate backbone with ~35 % of the carboxylates free, ~25 % grafted with octyl side-chains, and ~40 % with isopropyl ones. In aqueous solutions, A8-35 self-organizes into globular particles with a molecular mass of ~40 kDa. The thermal dynamics of A8-35 particles was measured by neutron scattering in the 10-picosecond, 18-picosecond, and 1-nanosecond time-scales on natural abundance and deuterium-labeled molecules, which permitted to separate backbone and side-chain motions. A parallel analysis was performed on molecular dynamics trajectories (Perlmutter et al., Langmuir 27:10523–10537, 2011). Experimental results and simulations converge, from their respective time-scales, to show that A8-35 particles feature a more fluid hydrophobic core, predominantly containing the octyl chains, and a more rigid solvent-exposed surface, made up predominantly of the hydrophilic polymer backbone. The fluidity of the core is comparable to that of the lipid environment around proteins in the center of biological membranes, as also measured by neutron scattering. The biological activity of proteins depends sensitively on molecular dynamics, which itself is strongly dependent on the immediate macromolecular environment. In this context, the characterization of A8-35 particle dynamics constitutes a step toward understanding the effect of amphipols on membrane protein stability and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A8-35:

An anionic amphipol of average molecular mass ~4.3 kDa, containing ~35 % free carboxylates, ~25 % octyl side-chains, and ~40 % isopropyl ones

APol:

Amphipol

CAC:

Critical association concentration

DAPol:

A8-35 with per-deuterated side-chains

EINS:

Elastic incoherent neutron scattering

HAPol:

Natural abundance A8-35

INS:

Inelastic neutron scattering

MD:

Molecular dynamics

M n〉:

Number-averaged molecular mass

mQ water:

Water purified on a A10 Advantage Millipore System

MSD:

Mean square displacement

OmpA, OmpX:

Respectively outer membrane proteins A and X from Escherichia coli

QENS:

Quasi-elastic neutron scattering

R S :

Stokes radius

SANS:

Small-angle neutron scattering

SEC:

Size exclusion chromatography

References

  • Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Bée M (1988) Quasielastic neutron scattering: principles and applications in solid state chemistry. Biology and Materials Science Adam Hilger, Philadelphia

    Google Scholar 

  • Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402

    Article  CAS  Google Scholar 

  • Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637

    Article  CAS  Google Scholar 

  • Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols. J Membr Biol. doi:10.1007/s00232-014-9694-4

    Article  CAS  Google Scholar 

  • Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi:10.1007/s00232-014-9657-9

    Article  CAS  Google Scholar 

  • Feinstein HE, Tifrea D, Sun G, Popot J-L, de la Maza LM, Cocco MJ (2014) Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J Membr Biol. doi:10.1007/s00232-014-9693-5

    Article  CAS  Google Scholar 

  • Ferrand M, Dianoux AJ, Petry W, Zaccai G (1993) Thermal motions and function of bacte-rio-rhod-opsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci USA 90:9668–9672

    Article  CAS  Google Scholar 

  • Fitter J, Lechner RE, Büldt G, Dencher NA (1996) Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proc Natl Acad Sci USA 193:7600–7605

    Article  Google Scholar 

  • Fitter J, Lechner RE, Dencher NA (1997) Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J 73:2126–2137

    Article  CAS  Google Scholar 

  • Frölich A, Gabel F, Jasnin M, Lehnert U, Oesterhelt D, Stadler AM, Tehei M, Weik M, Wood K, Zaccai G (2009) From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity. Faraday Discuss 41:117–130 discussion 175-207

    Article  Google Scholar 

  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  CAS  Google Scholar 

  • Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    Article  CAS  Google Scholar 

  • Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a per-deuterated amphipol. J Membr Biol. doi:10.1007/s00232-014-9656-x

    Article  CAS  Google Scholar 

  • Gohon Y, Popot J-L (2003) Membrane protein-surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22

    Article  CAS  Google Scholar 

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J. 94:3523–3537

    Article  CAS  Google Scholar 

  • Huynh KW, Cohen MR, Moiseenkova-Bell VY (2014) Application of amphipols for structu-re-functional analysis of TRP channels. J Membr Biol. doi:10.1007/s00232-014-9684-6

    Article  CAS  Google Scholar 

  • Jasnin M, van Eijck L, Koza MM, Peters J, Laguri C, Lortat-Jacob H, Zaccai G (2010) Dynamics of heparan sulfate explored by neutron scattering. Phys Chem Chem Phys 12:3360–3362

    Article  CAS  Google Scholar 

  • Jorgensen WL, Jenson C (1998) Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking a temperature of maximum density. J Comp Chem 19:1179–1186

    Article  CAS  Google Scholar 

  • Klauda JB, Kucerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting X-ray data from lipid bilayers. Biophys J 90:2796–2807

    Article  CAS  Google Scholar 

  • Kleinschmidt JH, Popot J-L (2014) Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys (in press)

  • König S, Sackmann E (1996) Molecular and collective dynamics of lipid bilayers. Curr Opin Colloid Interface Sci 1:78–82

    Article  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27:1–7

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WR III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  Google Scholar 

  • Natali F, Castellano C, Pozzi D, Congiu-Castellano A (2005) Dynamic properties of an orient-ed lipid/DNA complex studied by neutron scattering. Biophys J 88:1081–1090

    Article  CAS  Google Scholar 

  • Perez J, Zanotti JM, Durand D (1999) Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys J 77:454–469

    Article  CAS  Google Scholar 

  • Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537

    Article  CAS  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8

    Article  CAS  Google Scholar 

  • Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869

    Article  CAS  Google Scholar 

  • Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot J-L, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media. J Membr Biol. doi:10.1007/s00232-014-9654-z

    Article  CAS  Google Scholar 

  • Pocanschi C, Popot J-L, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42:103–118

    Article  CAS  Google Scholar 

  • Polovinkin V, Balandin T, Volkov O, Round E, Borshchevskiy V, Utrobin P, von Stetten D, Royant A, Willbold D, Arzumanyan A, Popot J-L, Gordeliy V (2014) Nanoparticle surface enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35. J Membr Biol. doi:10.1007/s00232-014-9701-9

    Article  CAS  Google Scholar 

  • Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  Google Scholar 

  • Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    Article  CAS  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  Google Scholar 

  • Rogan PK, Zaccai G (1981) Hydration of purple membrane as a function of relative humidity. J Mol Biol 145:281–284

    Article  CAS  Google Scholar 

  • Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 136:144–157

    Article  CAS  Google Scholar 

  • Stansfeld PJ, Jeffreys EE, Sansom MSP (2013) Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins. Structure 21:810–819

    Article  CAS  Google Scholar 

  • Tehei M, Zaccai G (2005) Adaptation to extreme environments: macromolecular dynamics in complex systems. Biochim Biophys Acta 1724:404–410

    Article  CAS  Google Scholar 

  • Tehei M, Madern D, Pfister C, Zaccai G (2001) Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proc Natl Acad Sci USA 98:14356–14361

    Article  CAS  Google Scholar 

  • Tehei M, Madern D, Franzetti B, Zaccai G (2005) Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J Biol Chem 280:40974–40979

    Article  CAS  Google Scholar 

  • Trapp M, Gutberlet T, Juranyi F, Unruh T, Demé B, Tehei M, Peters J (2010) Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering. J Chem Phys 133:164505

    Article  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  • Váró G, Lanyi JK (1991) Distortions in the photocycle of bacteriorhodopsin at moderate dehydration. Biophys J 59:313–322

    Article  Google Scholar 

  • Venkatesan M, Hirtzel CS, Rajagopalan R (1985) The effect of colloidal forces on the self-diffusion coefficients in strongly interacting dispersions. J Chem Phys 82:5685–5695

    Article  CAS  Google Scholar 

  • Weik M, Patzelt H, Zaccai G, Oesterhelt D (1998) Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. Mol Cell 1:411–419

    Article  CAS  Google Scholar 

  • Zaccai G (1987) Structure and hydration of purple membranes in different conditions. J Mol Biol 194:569–572

    Article  CAS  Google Scholar 

  • Zaccai G (2011) Neutron scattering perspectives for protein dynamics. J Non-Cryst Solids 357:615–621

    Article  CAS  Google Scholar 

  • Zaccai G (2013) The ecology of protein dynamics. Curr Phys Chem 3:9–16

    Article  CAS  Google Scholar 

  • Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Particular thanks are due to Michael Marek Koza and Bernhard Frick, ILL local contacts on IN6 and IN16, respectively. This work was supported by the French Centre National de la Recherche Scientifique (CNRS), by Université Paris–7 Denis Diderot, and by Grant “DYNAMO”, ANR-11-LABX-0011-01 from the French “Initiative d’Excellence” Program. ‘Computational resources were provided by the Minnesota Supercomputing Institute (MSI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Zaccai or Jean-Luc Popot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehei, M., Perlmutter, J.D., Giusti, F. et al. Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study. J Membrane Biol 247, 897–908 (2014). https://doi.org/10.1007/s00232-014-9725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9725-1

Keywords

Navigation