Skip to main content
Log in

Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee–Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 102. SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  • Avci E, Culha M (2013) Influence of droplet drying configuration on surface-enhanced Raman scattering performance. RSC Adv 3:17829–17836

    Article  CAS  Google Scholar 

  • Begley RF, Harvey AB, Byer RL (2003) Coherent anti-Stokes Raman spectroscopy. Appl Phys Lett 25:387–390

    Article  Google Scholar 

  • Benevides JM, Overman SA, Thomas GJ (2004) Raman spectroscopy of proteins. In: Current protocols in protein science. John Wiley & Sons, Inc, US, pp 17.8.1-17.8.35

  • Biesso A, Qian W, El-Sayed MA (2008) Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodopsin. J Am Chem Soc 130:3258–3259

    Article  CAS  PubMed  Google Scholar 

  • Biesso A, Qian W, Huang X, El-Sayed MA (2009) Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis. J Am Chem Soc 131:2442–2443

    Article  CAS  PubMed  Google Scholar 

  • Borshchevskiy VI, Round ES, Popov AN, Büldt G, Gordeliy VI (2011) X-ray-radiation-induced changes in bacteriorhodopsin structure. J Mol Biol 409:813–825

    Article  CAS  PubMed  Google Scholar 

  • Braiman M, Mathies R (1980) Resonance Raman evidence for an all-trans to 13-cis isomerization in the proton-pumping cycle of bacteriorhodopsin. Biochemistry 19:5421–5428

    Article  CAS  PubMed  Google Scholar 

  • Carey P (1982) Biochemical applications of Raman and resonance Raman spectroscopies. Elsevier, New York

    Google Scholar 

  • Carpentier P, Royant A, Ohana J, Bourgeois D (2007) Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy. J Appl Crystallogr 40:1113–1122

    Article  CAS  Google Scholar 

  • Charvolin D, Perez J-B, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot J-L (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410

    Article  CAS  PubMed  Google Scholar 

  • Chumanov GD, Efremov RG, Nabiev IR (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part I.—Water-soluble proteins, dipeptides and amino acids. J Raman Spectrosc 21:43–48

    Article  CAS  Google Scholar 

  • Coluccio ML, Das G, Mecarini F, Gentile F, Pujia A, Bava L, Tallerico R, Candeloro P, Liberale C, De Angelis F, Di Fabrizio E (2009) Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng 86:1085–1088

    Article  CAS  Google Scholar 

  • Corni S, Tomasi J (2002) Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: a theoretical study. J Chem Phys 116:1156–1164

    Article  CAS  Google Scholar 

  • Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q (2006) Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002–4006

    Article  CAS  PubMed  Google Scholar 

  • Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. Eur Biophys J 42:85–101

    Article  CAS  PubMed  Google Scholar 

  • Deckert-Gaudig T, Böhme R, Freier E, Sebesta A, Merkendorf T, Popp J, Gerwert K, Deckert V (2012) Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum. J Biophotonics 5:582–591

    Article  PubMed  Google Scholar 

  • Delfino I, Bizzarri AR, Cannistraro S (2006) Time-dependent study of single-molecule SERS signal from yeast cytochrome c. Chem Phys 326:356–362

    Article  CAS  Google Scholar 

  • Della Pia EA, Holm JV, Lloret N, Le Bon C, Popot J-L, Zoonens M, Nygård J, Martinez KL (2014a) A step closer to membrane protein multiplexed nanoarrays using biotin-doped polypyrrole. ACS Nano 8(2):1844–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Della Pia EA, Westh Hansen R, Zoonens M, Martinez KL (2014b) Functionalized amphipols: a versatile toolbox suitable for applications of membrane proteins in synthetic biology. J Membr Biol. doi:10.1007/s00232-014-9663-y

    Article  CAS  PubMed  Google Scholar 

  • Dick LA, Haes AJ, Van Duyne RP (2000) Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance Raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes. J Phys Chem B 104:11752–11762

    Article  CAS  Google Scholar 

  • Diller R, Stockburger M (1988) Kinetic resonance Raman studies reveal different conformational states of bacteriorhodopsin. Biochemistry 27:7641–7651

    Article  CAS  Google Scholar 

  • Drachev VP, Thoreson MD, Khaliullin EN, Davisson VJ, Shalaev VM (2004) Surface-enhanced Raman difference between human insulin and insulin lispro detected with adaptive nanostructures. J Phys Chem B 108:18046–18052

    Article  CAS  Google Scholar 

  • Drachev VP, Thoreson MD, Nashine V, Khaliullin EN, Ben-Amotz D, Davisson VJ, Shalaev VM (2005) Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules. J Raman Spectrosc 36:648–656

    Article  CAS  Google Scholar 

  • Elter S, Raschle T, Arens S, Gelev V, Etzkorn M, Wagner G (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J Membr Biol. doi:10.1007/s00232-014-9669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Struct Lond Engl 1993 21:394–401

    CAS  Google Scholar 

  • Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi:10.1007/s00232-014-9657-9

    Article  CAS  PubMed  Google Scholar 

  • Félidj N, Aubard J, Lévi G (1999) Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids. J Chem Phys 111:1195–1208

    Article  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  • Futamata M (2006) Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles. Faraday Discuss 132:45–61

    Article  CAS  PubMed  Google Scholar 

  • Futamata M, Maruyama Y, Ishikawa M (2005) Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS. J Mol Struct 735–736:75–84

    Article  CAS  Google Scholar 

  • Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    Article  CAS  PubMed  Google Scholar 

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  PubMed  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok RWH, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordeliy VI, Schlesinger R, Efremov R, Büldt G, Heberle J (2003) Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin. Methods Mol Biol Clifton NJ 228:305–316

    CAS  Google Scholar 

  • Habuchi S, Cotlet M, Gronheid R, Dirix G, Michiels J, Vanderleyden J, De Schryver FC, Hofkens J (2003) Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced Green Fluorescent Protein. J Am Chem Soc 125:8446–8447

    Article  CAS  PubMed  Google Scholar 

  • Hao E, Schatz GC (2003) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  • Hildebrandt P, Stockburger M (1984) Role of water in bacteriorhodopsin’s chromophore: resonance Raman study. Biochemistry 23:5539–5548

    Article  CAS  Google Scholar 

  • Hirai T, Subramaniam S, Lanyi JK (2009) Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 19:433–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrabakova J, Ataka K, Heberle J, Hildebrandt P, Murgida DH (2006) Long distance electron transfer in cytochrome c oxidase immobilised on electrodes. A surface enhanced resonance Raman spectroscopic study. Phys Chem Chem Phys 8:759–766

    Article  CAS  PubMed  Google Scholar 

  • Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84:1–20

    Article  CAS  Google Scholar 

  • Jiang, Bosnick K, Maillard M, Brus L (2003) Single-molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964–9972

    Article  CAS  Google Scholar 

  • Kennedy BJ, Spaeth S, Dickey M, Carron KT (1999) Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J Phys Chem B 103:3640–3646

    Article  CAS  Google Scholar 

  • Kleinschmidt JH, Popot J-L (2014) Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys (in press)

  • Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  • Kneipp K, Kneipp H, Bohr HG (2006) Single-molecule SERS spectroscopy. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering. Springer, Berlin Heidelberg, pp 261–277

    Chapter  Google Scholar 

  • Koo T-W, Chan S, Berlin AA (2005) Single-molecule detection of biomolecules by surface-enhanced coherent anti-stokes Raman scattering. Opt Lett 30:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Korenstein R, Hess B (1977a) Hydration effects on cistrans isomerization of bacteriorhodopsin. FEBS Lett 82:7–11

    Article  CAS  PubMed  Google Scholar 

  • Korenstein R, Hess B (1977b) Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature 270:184–186

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    Article  CAS  PubMed  Google Scholar 

  • Lazarev YA, Evgeni LT (1980) Effect of water on the structure of bacteriorhodopsin and photochemical processes in purple membranes. Biochim Biophys Acta 590:324–338

    Article  CAS  PubMed  Google Scholar 

  • Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot J-L (2014) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. doi:10.1093/nar/gku250

    Article  CAS  PubMed  Google Scholar 

  • Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63:65–87

    Article  PubMed  CAS  Google Scholar 

  • Le Ru EC, Etchegoin PG, Meyer M (2006a) Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125:204701

    Article  PubMed  CAS  Google Scholar 

  • Le Ru EC, Meyer M, Etchegoin PG (2006b) Proof of single-molecule sensitivity in surface enhanced-Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110:1944–1948

    Article  PubMed  CAS  Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  • London E, Khorana HG (1982) Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem 257:7003–7011

    Article  CAS  PubMed  Google Scholar 

  • Maeda A (1995) Application of FTIR spectroscopy to the structural study on the function of bacteriorhodopsin. Isr J Chem 35:387–400

    Article  CAS  Google Scholar 

  • Mathies RA (1991) From femtoseconds to biology: mechanism of bacteriorhodopsin’s light-driven proton pump. Proc Indian Acad Sci 103:283–293

    Article  CAS  Google Scholar 

  • Morgan JE, Vakkasoglu AS, Lanyi JK, Lugtenburg J, Gennis RB, Maeda A (2012) Structure changes upon deprotonation of the proton release group in the bacteriorhodopsin photocycle. Biophys J 103:444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  • Munro CH, Smith WE, Garner M, Clarkson J, White PC (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 11:3712–3720

    Article  CAS  Google Scholar 

  • Myers AB, Harris RA, Mathies RA (1983) Resonance Raman excitation profiles of bacteriorhodopsin. J Chem Phys 79:603–613

    Article  CAS  Google Scholar 

  • Nabiev IR, Efremóv RG, Chumanov GD (1985) The chromophore-binding site of bacteriorhodopsin. Resonance Raman and surface-enhanced resonance Raman spectroscopy and quantum chemical study. J Biosci 8:363–374

    Article  CAS  Google Scholar 

  • Nabiev IR, Chumanov GD, Efremov RG (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part II. Application of short- and long-range components of SERS to the study of the structure and function of membrane proteins. J Raman Spectrosc 21:49–53

    Article  CAS  Google Scholar 

  • Naumann H, Klare JP, Engelhard M, Hildebrandt P, Murgida DH (2006) Time-resolved methods in Biophysics. 1. A novel pump and probe surface-enhanced resonance Raman approach for studying biological photoreceptors. Photochem Photobiol Sci 5:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678

    Article  CAS  PubMed  Google Scholar 

  • Otto A (1984) Surface-enhanced Raman scattering: “Classical” and “Chemical” origins. In: Cardona PDM, Güntherodt PDG (eds) Light Scattering in solids IV. Springer, Berlin Heidelberg, pp 289–418

    Chapter  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  • Patra PP, Kumar GVP (2013) Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by bi-analyte method. J Phys Chem Lett 4:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8

    Article  CAS  PubMed  Google Scholar 

  • Peticolas WL (1995) Raman spectroscopy of DNA and proteins. In: Sauer K (ed) Methods in enzymology. Academic Press, London, pp 389–416

    Google Scholar 

  • Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell H-J, Kleinschmidt JH, Popot J-L (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961

    Article  CAS  PubMed  Google Scholar 

  • Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  PubMed  Google Scholar 

  • Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    Article  CAS  PubMed  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  PubMed  Google Scholar 

  • Siddhanta S, Naray C (2012) Surface-enhanced Raman spectroscopy of proteins: implications in drug designing. Nanomater Nanotechnol 2:1

    Article  Google Scholar 

  • Smith SO, Lugtenburg J, Mathies RA (1985) Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. J Membr Biol 85:95–109

    Article  CAS  PubMed  Google Scholar 

  • Smith SO, Pardoen JA, Lugtenburg J, Mathies RA (1987a) Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin. J Phys Chem 91:804–819

    Article  CAS  Google Scholar 

  • Smith SO, Braiman MS, Myers AB, Pardoen JA, Courtin JML, Winkel C, Lugtenburg J, Mathies RA (1987b) Vibrational analysis of the all-trans-retinal chromophore in light-adapted bacteriorhodopsin. J Am Chem Soc 109:3108–3125

    Article  CAS  Google Scholar 

  • Steuwe C, Kaminski CF, Baumberg JJ, Mahajan S (2011) Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett 11:5339–5343

    Article  CAS  PubMed  Google Scholar 

  • Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci 93:15047–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  PubMed  Google Scholar 

  • Váró G, Lanyi JK (1991) Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. Biochemistry 30:5016–5022

    Article  PubMed  Google Scholar 

  • Wang ZB, Luk’yanchuk BS, Guo W, Edwardson SP, Whitehead DJ, Li L, Liu Z, Watkins KG (2008) The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J Chem Phys 128:094705

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Käll M (2003) Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. ChemPhysChem 4:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  • Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324

    Article  CAS  Google Scholar 

  • Xu H, Bjerneld EJ, Aizpurua J, Apell P, Gunnarsson L, Petronis S, Kasemo B, Larsson C, Hook F, Kall M (2001) Interparticle coupling effects in surface-enhanced Raman scattering. In: BiOS 2001, the international symposium on biomedical optics. International Society for Optics and Photonics, pp 35–42

  • Yang Y, Shi J, Kawamura G, Nogami M (2008) Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr Mater 58:862–865

    Article  CAS  Google Scholar 

  • Yen C-W, Chu L-K, El-Sayed MA (2010) Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. J Am Chem Soc 132:7250–7251

    Article  CAS  PubMed  Google Scholar 

  • Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are deeply thankful to Fabrice Giusti (UMR 7099) for synthesizing the amphipols used in the present work. The Raman scattering experiments and UV–Visible absorbance spectroscopy measurements were performed at the ID29S-Cryobench platform of the Grenoble Instruct centre (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from the European Synchrotron Radiation Facility (ESRF), FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB), located next to beamline ID29 of the ESRF. This work was supported by the program “Chaires d’excellence, édition 2008” of the Agence Nationale de la Recherche France, by the Commissariat à l’Énergie Atomique (Institut de Biologie Structurale), by the Helmholtz Gemeinschaft (Research Centre Jülich) Special Topic of Cooperation 5.1 specific agreement, by a Marie Curie grant (Seventh Framework Programme-PEOPLE-2007-1-1-Initial Training Networks, project Structural Biology of Membrane Proteins), by a European Commission Seventh Framework Programme grant for the European Drug Initiative on Channels and Transporters consortium (HEALTH-201924), by the Centre National pour la Recherche Scientifique, by University Paris 7, and by the “Initiative d’Excellence” program of the French State (Grant “DYNAMO,” ANR-11-LABX-0011-01). Vitaly Polovinkin is very grateful to the Fondation Nanosciences for financial support. Part of this work was supported by the German Ministry of Education and Research (PhoNa-Photonic Nanomaterials). We acknowledge support of this work by the Russian Foundation for Basic Research (Research projects 13-04-91320 and 13-04-01700), by the Russian program “5Top100” and by the Ministry of Education and Science of the Russian Federation. This work was supported by ONEXIM, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gordeliy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polovinkin, V., Balandin, T., Volkov, O. et al. Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35. J Membrane Biol 247, 971–980 (2014). https://doi.org/10.1007/s00232-014-9701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9701-9

Keywords

Navigation