Skip to main content
Log in

Temperature Dependence of Steady-State and Presteady-State Kinetics of a Type IIb Na+/Pi Cotransporter

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The temperature dependence of the transport kinetics of flounder Na+-coupled inorganic phosphate (Pi) cotransporters (NaPi-IIb) expressed in Xenopus oocytes was investigated using radiotracer and electrophysiological assays. 32Pi uptake was strongly temperature-dependent and decreased by ∼80% at a temperature change from 25°C to 5°C. The corresponding activation energy (E a) was ∼14 kcal mol−1 for the cotransport mode. The temperature dependence of the cotransport and leak modes was determined from electrogenic responses to 1 mM Pi and phosphonoformic acid (PFA), respectively, under voltage clamp. The magnitude of the Pi- and PFA-induced changes in holding current decreased with temperature. E a at −100 mV for the cotransport and leak modes was ∼16 kcal mol−1 and ∼11 kcal mol−1, respectively, which suggested that the leak is mediated by a carrier, rather than a channel, mechanism. Moreover, E a for cotransport was voltage-independent, suggesting that a major conformational change in the transport cycle is electroneutral. To identify partial reactions that confer temperature dependence, we acquired presteady-state currents at different temperatures with 0 mM Pi over a range of external Na+. The relaxation time constants increased, and the peak time constant shifted toward more positive potentials with decreasing temperature. Likewise, there was a depolarizing shift of the charge distribution, whereas the total available charge and apparent valency predicted from single Boltzmann fits were temperature-independent. These effects were explained by an increased temperature sensitivity of the Na+-debinding rate compared with the other voltage-dependent rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The dependence of z on [Na+] is a consequence of fitting a single Boltzmann function to the Q-V data. The valence estimated from the single fit is a weighted value that depends on the relative contributions from the empty carrier and Na+ binding partial reactions. Similar behavior was observed by fitting a single Boltzmann to presteady-state data generated by a three-state model that simulates the empty carrier and one voltage-dependent Na+ binding step (I. C. Forster, unpublished data).

  2. In applying this model to NaPi-IIb, we have lumped the empty carrier transition (1–8, Fig. 6A) and Na+ binding transitions (1–2a, 2a–2b) into a single transition. A more accurate description of the presteady-state kinetics would require fitting the presteady-state relaxations to >2 exponentials and using at least a two Boltzmann fit to the data. We were unable to extract more than one component of nonendogenous presteady-state charge movement by exponential curve fitting with confidence. Moreover, attempts to fit a double Boltzmann function to our Q-V data (e.g., as undertaken by Krofchick, Huntley and Silverman [2004] for SGLT1) were equally unsuccessful because of fit uncertainties with the larger number of free parameters.

References

  • Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427:803–807

    Article  PubMed  CAS  Google Scholar 

  • Adams SV, DeFelice LJ (2002) Flux coupling in the human serotonin transporter. Biophys J 83:3268–3282

    PubMed  CAS  Google Scholar 

  • Beckman ML, Quick MW (2001) Substrates and temperature differentiate ion flux from serotonin flux in a serotonin transporter. Neuropharmacology 40:526–535

    Article  PubMed  CAS  Google Scholar 

  • Binda F, Bossi E, Giovannardi S, Forlani G, Peres A (2002) Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1. FEBS Lett 512:303–307

    Article  PubMed  CAS  Google Scholar 

  • Birnir B, Loo DD, Wright EM (1991) Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine. Pfluegers Arch 418:79–85

    Article  CAS  Google Scholar 

  • Chen XZ, Coady MJ, Jalal F, Wallendorff B, Lapointe JY (1997) Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter. Biophys J 73:2503–2510

    PubMed  CAS  Google Scholar 

  • DeFelice LJ (2004) Transporter structure and mechanism. Trends Neurosci 27:352–359

    Article  PubMed  CAS  Google Scholar 

  • Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N (1997) Thyroid Na+/I symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 272:27230–27238

    Article  PubMed  CAS  Google Scholar 

  • Forster I, Hernando N, Biber J, Murer H (1998) The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol 112:1–18

    Article  PubMed  CAS  Google Scholar 

  • Forster IC, Biber J, Murer H (2000) Proton-sensitive transitions of renal type II Na+-coupled phosphate cotransporter kinetics. Biophys J 79:215–230

    PubMed  CAS  Google Scholar 

  • Forster IC, Kohler K, Biber J, Murer H (2002) Forging the link between structure and function of electrogenic cotransporters: The renal type IIa Na+/Pi cotransporter as a case study. Prog Biophys Mol Biol 80:69–108

    Article  PubMed  CAS  Google Scholar 

  • Forster IC, Loo DD, Eskandari S (1999) Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Physiol 276:F644-F649

    PubMed  CAS  Google Scholar 

  • Forster IC, Wagner CA, Busch AE, Lang F, Biber J, Hernando N, Murer H, Werner A (1997) Electrophysiological characterization of the flounder type II Na+/Pi cotransporter (NaPi-5) expressed in Xenopus laevis oocytes. J Membr Biol 160:9–25

    Article  PubMed  CAS  Google Scholar 

  • Hazama A, Loo DD, Wright EM (1997) Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J Membr Biol 155:175–186

    Article  PubMed  CAS  Google Scholar 

  • Karakossian MH, Spencer SR, Gomez AQ, Padilla OR, Sacher A, Loo DD, Nelson N, Eskandari S (2005) Novel properties of a mouse gamma-aminobutyric acid transporter (GAT4). J Membr Biol 203:65–82

    Article  PubMed  CAS  Google Scholar 

  • Kohler K, Forster IC, Stange G, Biber J, Murer H (2002a) Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol 282:F687–F696

    CAS  Google Scholar 

  • Kohler K, Forster IC, Stange G, Biber J, Murer H (2002b) Transport function of the renal type IIa Na+/Pi cotransporter is codetermined by residues in two opposing linker regions. J Gen Physiol 120:693–703

    Article  PubMed  Google Scholar 

  • Krofchick D, Huntley SA, Silverman M (2004) Transition states of the high-affinity rabbit Na+/glucose cotransporter SGLT1 as determined from measurement and analysis of voltage-dependent charge movements. Am J Physiol 287:C46–C54

    Article  CAS  Google Scholar 

  • Loo DDF, Hirayama BA, Meinild A-K, Chandy G, Zeuthen T, Wright EM (1999) Passive water and ion transport by cotransporters. J Physiol 518:195–202

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Cao Y, Lester HA (1998) Measurement of transient currents from neurotransmitter transporters expressed in Xenopus oocytes. Methods Enzymol 296:551–566

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Kleinberger-Doron N, Keshet GI, Davidson N, Kanner BI, Lester HA (1996) Ion binding and permeation at the GABA transporter GAT1. J Neurosci 16:5405–5414

    PubMed  CAS  Google Scholar 

  • Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18:7099–7110

    PubMed  CAS  Google Scholar 

  • Parent L, Wright EM (1993) Electrophysiology of the Na+/glucose cotransporter. Soc Gen Physiol Ser 48:263–281

    PubMed  CAS  Google Scholar 

  • Segel IH (1976) Biochemical Calculations. Wiley, New York

    Google Scholar 

  • Sonders MS, Amara SG. (1996) Channels in transporters. Curr Opin Neurobiol 6:294–302

    Article  PubMed  CAS  Google Scholar 

  • Van Winkle L (1995) Biomembrane Transport. Academic Press, San Diego

    Google Scholar 

  • Virkki LV, Forster IC, Bacconi A, Biber J, Murer H (2005a) Functionally important residues in the predicted 3rd transmembrane domain of the type IIa sodium-phosphate co-transporter (NaPi-IIa). J Membr Biol 206:227–238

    Article  PubMed  CAS  Google Scholar 

  • Virkki LV, Forster IC, Biber J, Murer H (2005b) Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa). Am J Physiol 288:F969–F981

    Article  CAS  Google Scholar 

  • Virkki LV, Forster IC, Hernando N, Biber J, Murer H (2003) Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. J Bone Miner Res 18:2135–2141

    Article  PubMed  CAS  Google Scholar 

  • Virkki LV, Murer H, Forster IC (2006a) Mapping conformational changes of a type IIb Na+/Pi cotransporter by voltage clamp fluorometry. J Biol Chem 281:28837–28849

    Article  PubMed  CAS  Google Scholar 

  • Virkki LV, Murer H, Forster IC (2006b) Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: Shedding light on substrate binding order. J Gen Physiol 127:539–555

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18:7650–7661

    PubMed  CAS  Google Scholar 

  • Wagner CA (1998) Elektrophysiologische Untersuchungen an den renalen Natrium-Phosphat-Kotransportern NaPi-3 (Mensch) und NaPi-7 (Maus). Doctoral diss., University of Tübingen, Tübingen

    Google Scholar 

  • White SH (1970) A study of lipid bilayer membrane stability using precise measurements of specific capacitance. Biophys J 10:1127–1148

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Pajor AM (2000) The transport properties of the human renal Na(+)-dicarboxylate cotransporter under voltage-clamp conditions. Am J Physiol 279:F54–F64

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants to H. M. from the Swiss National Science Foundation and the Gebert Rüf Foundation (http://www.grstiftung.ch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Forster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacconi, A., Ravera, S., Virkki, L.V. et al. Temperature Dependence of Steady-State and Presteady-State Kinetics of a Type IIb Na+/Pi Cotransporter. J Membrane Biol 215, 81–92 (2007). https://doi.org/10.1007/s00232-007-9008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9008-1

Keywords

Navigation