Skip to main content
Log in

Conductive and Kinetic Properties of Connexin45 Hemichannels Expressed in Transfected HeLa Cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Human HeLa cells transfected with mouse connexin Cx45 were used to examine the conductive and kinetic properties of Cx45 hemichannels. The experiments were carried out on single cells using a voltage-clamp method. Lowering the [Ca2+]o revealed an extra current. Its sensitivity to extracellular Ca2+ and gap junction channel blockers (18α-glycyrrhetinic acid, palmitoleic acid, heptanol), and its absence in non-transfected HeLa cells suggested that it is carried by Cx45 hemichannels. The conductive and kinetic properties of this current, I hc, were determined adopting a biphasic pulse protocol. I hc activated at positive V m and deactivated partially at negative V m. The analysis of the instantaneous I hc yielded a linear function g hc,inst = f(V m) with a hint of a negative slope (g hc,inst: instantaneous conductance). The analysis of the steady-state I hc revealed a sigmoidal function g hc,ss = f(V m) best described with the Boltzmann equation: V m,0 = −1.08 mV, g hc,min = 0.08 (g hc,ss: steady-state conductance; V m, 0:V m at which g hc,ss is half-maximally activated; g hc,min: minimal conductance; major charge carriers: K+ and Cl). The g hc was minimal at negative V m and maximal at positive V m. This suggests that Cx45 connexons integrated in gap junction channels are gating with negative voltage. I hc deactivated exponentially with time, giving rise to single time constants, τd. The function τd = f(V m) was exponential and increased with positive V md = 7.6 s at V m = 0 mV). The activation of I hc followed the sum of two exponentials giving rise to the time constants, τa1 and τa2. The function τa1 = f(V m) and τa2 = f(V m) were bell-shaped and yielded a maximum of ≅ 0.6 s at V m ≅ −20 mV and ≅ 4.9 s at V m ≅ 15 mV, respectively. Neither τa1 = f(V m) nor τa2 = f(V m) coincided with τd = f(V m). These findings conflict with the notion that activation and deactivation follow a simple reversible reaction scheme governed by first-order voltage-dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bader, P., Desplantez, T., Weingart, R. 2003 Kinetic properties of currents carried by mCx45 gap junction channels and hemichannels. In: Proceedings of the 2003 International Gap Junction Conference, p 41. Cambridge UK, August 23–28, 2003

  • P. Bader R. Weingart (2003) ArticleTitleConductive and kinetic properties of connexin45 hemichannels Pfluegers Arch 445 R69

    Google Scholar 

  • K. Banach R. Weingart (2000) ArticleTitleVoltage gating of Cx43 gap junction channels involves fast and slow current transitions Pfluegers Arch 439 248–250 Occurrence Handle10.1007/s004240050936 Occurrence Handle1:CAS:528:DC%2BD3cXhslOlt7w%3D

    Article  CAS  Google Scholar 

  • L.C. Barrio J. Capel J.A. Jarillo C. Castro A. Revilla (1997) ArticleTitleSpecies-specific voltage-gating properties of connexin−45 junctions expressed in Xenopus oocytes Biophys. J 73 757–769 Occurrence Handle1:CAS:528:DyaK2sXkvFCmurc%3D Occurrence Handle9251792

    CAS  PubMed  Google Scholar 

  • R. Bruzzone T.W. White D.L. Paul (1996) ArticleTitleConnections with connexins: the molecular basis of direct intercellular signalling Eur. J. Biochem 238 1–27 Occurrence Handle10.1111/j.1432-1033.1996.0001q.x Occurrence Handle1:CAS:528:DyaK28Xjt1KrsLo%3D Occurrence Handle8665925

    Article  CAS  PubMed  Google Scholar 

  • F.F. Bukauskas R. Weingart (1994) ArticleTitleVoltage-dependent gating of single gap junction channels in an insect cell line Biophys. J 67 613–625 Occurrence Handle1:CAS:528:DyaK2cXltlSmsL8%3D Occurrence Handle7524710

    CAS  PubMed  Google Scholar 

  • A. Butterweck U. Gergs C. Elfgang K. Willecke O. Traub (1994) ArticleTitleImmunochemical characterization of the gap junction protein connexin45 in mouse kidney and transfected human HeLa cells J. Membrane Biol 141 247–256 Occurrence Handle10.1007/BF00235134 Occurrence Handle1:CAS:528:DyaK2cXmt1Ojsbw%3D

    Article  CAS  Google Scholar 

  • S.H. Vries ParticleDe E.A. Schwartz (1992) ArticleTitleHemi-gap junction channels in solitary horizontal cells of the catfish retina J. Physiol 445 201–230 Occurrence Handle1380084

    PubMed  Google Scholar 

  • M. Díaz F.V. Sepúlveda (1995) ArticleTitleCharacterisation of Ca2+-dependent inwardly rectifying K+ currents in HeLa cells Pfluegers Arch 430 168–180 Occurrence Handle10.1007/BF00374647

    Article  Google Scholar 

  • L. Ebihara V.M. Berthoud E.G. Beyer (1995) ArticleTitleDistinct behavior of connexin56 and connexin46 gap junction channels can be predicted from the behavior of their hemi-gap-junctional channels Biophys. J 68 1796–1803 Occurrence Handle1:CAS:528:DyaK2MXlt1Kgs7o%3D Occurrence Handle7612821

    CAS  PubMed  Google Scholar 

  • S. Elenes A.D. Martinez M. Delmar E.C. Beyer A.P. Moreno (2001) ArticleTitleHeterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43 Biophys. J 81 1406–1418 Occurrence Handle1:CAS:528:DC%2BD3MXmtlCktrg%3D Occurrence Handle11509355

    CAS  PubMed  Google Scholar 

  • C. Elfgang R. Eckert H. Lichtenberg-Fraté A. Butterweck O. Traub R.A. Klein D.F. Hülser K. Willecke (1995) ArticleTitleSpecific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells J. Cell. Biol 129 805–817 Occurrence Handle10.1083/jcb.129.3.805 Occurrence Handle1:CAS:528:DyaK2MXlt1Wrs7k%3D Occurrence Handle7537274

    Article  CAS  PubMed  Google Scholar 

  • D. Gros H.J. Jongsma (1996) ArticleTitleConnexins in mammalian heart function Bioessays 18 719–730 Occurrence Handle10.1002/bies.950180907 Occurrence Handle1:CAS:528:DyaK28Xmtl2ju7c%3D Occurrence Handle8831288

    Article  CAS  PubMed  Google Scholar 

  • A.L. Harris (2001) ArticleTitleEmerging issues of connexin channels: biophysics fills the gap Quart. Rev. Biophys 34 325–472 Occurrence Handle1:CAS:528:DC%2BD38XitVCnt70%3D

    CAS  Google Scholar 

  • A.L. Harris D.C. Spray M.V.L. Bennett (1981) ArticleTitleKinetic properties of a voltage-dependent junctional conductance J. Gen. Physiol 77 95–117 Occurrence Handle10.1085/jgp.77.1.95 Occurrence Handle1:STN:280:Bi6C2czptlE%3D Occurrence Handle6259275

    Article  CAS  PubMed  Google Scholar 

  • R.P. Kondo S.-Y. Wang S.A. John J.N. Weiss J.I. Goldhaber (2000) ArticleTitleMetabolic inhibition activates a non-selective current through connexin-hemichannels in isolated ventricular myocytes J. Mol. Cell. Cardiol 32 1859–1872 Occurrence Handle10.1006/jmcc.2000.1220 Occurrence Handle1:CAS:528:DC%2BD3cXmvFWksr0%3D Occurrence Handle11013130

    Article  CAS  PubMed  Google Scholar 

  • A.G. Kléber Y. Rudy (2004) ArticleTitleBasic mechanisms of cardiac impulse propagation and associated arrhythmias Physiol. Rev 84 431–488 Occurrence Handle10.1152/physrev.00025.2003 Occurrence Handle15044680

    Article  PubMed  Google Scholar 

  • H. Li T.F. Liu A. Lazrak C. Peracchia G.S. Goldberg P.D. Lampe R.G. Johnson (1996) ArticleTitleProperties and regulation of gap junction hemichannels in the plasma membranes of cultured cells J. Cell Biol 134 1019–1030 Occurrence Handle10.1083/jcb.134.4.1019 Occurrence Handle1:CAS:528:DyaK28XltFGrtb4%3D Occurrence Handle8769424

    Article  CAS  PubMed  Google Scholar 

  • P.E. Martin G. Blundell S. Ahmad R.J. Errington W.H. Evans (2001) ArticleTitleMultiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels J. Cell Sci 114 3845–3855 Occurrence Handle1:CAS:528:DC%2BD3MXosl2rtbY%3D Occurrence Handle11719551

    CAS  PubMed  Google Scholar 

  • A.P. Moreno J.G. Laing E.G. Beyer D.C. Spray (1995) ArticleTitleProperties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells Am. J. Physiol 268 C356–C365 Occurrence Handle1:CAS:528:DyaK2MXktFGnsrw%3D Occurrence Handle7532358

    CAS  PubMed  Google Scholar 

  • B. Nilius J. Prenen T. Voets J. Eggermont G. Droogmans (1998) ArticleTitleActivation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cells J. Physiol 506.2 353–361 Occurrence Handle10.1111/j.1469-7793.1998.353bw.x

    Article  Google Scholar 

  • A. Noma N. Tsuboi (1987) ArticleTitleDependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig J. Physiol 382 193–211 Occurrence Handle1:CAS:528:DyaL2sXhs1emtA%3D%3D Occurrence Handle2442361

    CAS  PubMed  Google Scholar 

  • B. Rose W.R. Loewenstein (1976) ArticleTitlePermeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin J. Membrane Biol 28 87–119 Occurrence Handle1:CAS:528:DyaE28XlsVSiurY%3D

    CAS  Google Scholar 

  • M. Sahebgharani S.P. Hardy A.W. Lloid A.C. Hunter M.C. Allen (2001) ArticleTitleVolume-activated chloride currents in HeLa cells are blocked by Tamoxifen but not by a membrane impermeant quaternary analogue Cell. Physiol. Biochem 11 99–104 Occurrence Handle10.1159/000047797 Occurrence Handle11275688

    Article  PubMed  Google Scholar 

  • R. Sauvé G. Roy D. Payet (1983) ArticleTitleSingle channel K+ currents from HeLa cells J. Membrane Biol 74 41–49

    Google Scholar 

  • R. Sauvé C. Simoneau R. Monette G. Roy (1986) ArticleTitleSingle-channel analysis of the potassium permeability in HeLa cancer cells: Evidence for a calcium-activated potassium channel of small unitary conductance J. Membrane Biol 92 269–282

    Google Scholar 

  • N.J. Severs S. Rothery E. Dupont S.R. Coppen H.-I. Yeh Y.-S. Ko T. Matsushita R. Kaba D. Halliday (2001) ArticleTitleImmunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system Microsc. Res. Tech 52 301–322 Occurrence Handle10.1002/1097-0029(20010201)52:3<301::AID-JEMT1015>3.0.CO;2-Q Occurrence Handle1:CAS:528:DC%2BD3MXhsFCkur0%3D Occurrence Handle11180622

    Article  CAS  PubMed  Google Scholar 

  • H. Sugiura J. Toyama N. Tsuboi K. Kamiya I. Kodama (1990) ArticleTitleATP directly affects junctional conductance between paired ventricular myocytes isolated from guinea pig heart Circ. Res 66 1095–1102 Occurrence Handle1:CAS:528:DyaK3cXitFCns7w%3D Occurrence Handle2156633

    CAS  PubMed  Google Scholar 

  • E.B. Trexler M.V.L. Bennett T.A. Bargiello V.K. Verselis (1996) ArticleTitleVoltage gating and permeation in a gap junction hemichannel Proc. Natl. Acad. Sci. USA 93 5836–5841 Occurrence Handle10.1073/pnas.93.12.5836 Occurrence Handle1:CAS:528:DyaK28Xjs1Ojsr0%3D Occurrence Handle8650179

    Article  CAS  PubMed  Google Scholar 

  • V. Valiunas (2002) ArticleTitleBiophysical properties of connexin−45 gap junction hemichannels studied in vertebrate cells J. Gen. Physiol 119 147–164 Occurrence Handle10.1085/jgp.119.2.147 Occurrence Handle1:CAS:528:DC%2BD38XhsVGqsL4%3D Occurrence Handle11815665

    Article  CAS  PubMed  Google Scholar 

  • V. Valiunas R. Weingart (2000) ArticleTitleElectrical properties of gap junction hemichannels identified in transfected HeLa cells Pfluegers Arch 440 366–379 Occurrence Handle10.1007/s004240000294 Occurrence Handle1:CAS:528:DC%2BD3cXjvFCgtbY%3D

    Article  CAS  Google Scholar 

  • V. Valiunas D. Manthey R. Vogel K. Willecke R. Weingart (1999) ArticleTitleBiophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells J. Physiol 519.3 631–644 Occurrence Handle10.1111/j.1469-7793.1999.0631n.x

    Article  Google Scholar 

  • T.A. Veen ParticleVan H.V. Rijen ParticleVan H.J. Jongsma (2000) ArticleTitleElectrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation Cardiovasc. Res 46 496–510 Occurrence Handle10.1016/S0008-6363(00)00047-X Occurrence Handle10912460

    Article  PubMed  Google Scholar 

  • R. Vogel R. Weingart (1998) ArticleTitleMathematical model of vertebrate gap junctions derived from electrical measurements on homotypic and heterotypic channels J. Physiol 510.1 177–189 Occurrence Handle10.1111/j.1469-7793.1998.177bz.x

    Article  Google Scholar 

  • H.-Z. Wang J. Li L.F. Lemanski R.D. Veenstra (1992) ArticleTitleGating of mammalian cardiac gap junction channels by transjunctional voltage Biophys. J 63 139–151 Occurrence Handle1:CAS:528:DyaK38XltVyqtrg%3D Occurrence Handle1420863

    CAS  PubMed  Google Scholar 

  • K. Willecke J. Eiberger J. Degen D. Eckhardt A. Romualdi M. Güldenagel U. Deutsch G. Söhl (2002) ArticleTitleStructural and functional diversity of connexin genes in the mouse and human genome Biol. Chem 383 725–737 Occurrence Handle10.1515/BC.2002.076 Occurrence Handle1:CAS:528:DC%2BD38XlvFelsrY%3D Occurrence Handle12108537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Lüthi for expert technical assistance and H. Imboden, Department of Cell Biology, University of Bern for valuable discussions. The cells were provided by K. Willecke, Institute of Genetics, University of Bonn, Germany. This work was supported by the Swiss National Science Foundation (31-55297.98 and 31-67230.01 to R.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Weingart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, P., Weingart, R. Conductive and Kinetic Properties of Connexin45 Hemichannels Expressed in Transfected HeLa Cells. J Membrane Biol 199, 143–154 (2004). https://doi.org/10.1007/s00232-004-0682-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-004-0682-y

Keywords

Navigation