Skip to main content

Gap Junction Channels: The Electrical Conduit of the Intercellular World

  • Chapter
Electrophysiology of Unconventional Channels and Pores

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 18))

  • 913 Accesses

Abstract

The concept of an intercellular channel that mediates the direct intracellular passage of ions, second messengers, and metabolites between adjacent cells was born from the observations of electrical coupling within cellular excitable and nonexcitable tissues in the 1950s and 1960s. Originally called the “nexus”, the term gap junction was applied to this membrane structure after the observation of 1–2 nm gap between adjacent cell membranes populated with hexameric protein bridges containing a central aqueous pore in 1967. Molecular structural models of the gap junction channel evolved in 1977 and approximately every 20 years since with increasing resolution. The first junction channel current records and the cloning of the connexin subunits occurred in the mid-1980s, ushering in the molecular era of gap junction channel research. This atypical intracellular double membrane channel is now known to be formed by 20 different mammalian connexins with 60 % of them linked to inherited human diseases. Once thought to be a large static channel, gap junction channels exhibit with conductances that vary from 10 to 300 pS with ionic and molecular permeabilities that defy the simple principles of a nonselective large aqueous pore. Their activity is modulated by numerous mechanisms including calcium signaling, intracellular pH, post-translation modifications (PTMs) like protein phosphorylation and acetylation, and a variety of lipophiles. Despite knowledge of the connexin membrane topology and primary amino acid sequences for three decades, precise identification of the molecular pore composition of this unconventional ion channel remains poorly understood. Recent development of a 3.5 Å three-dimensional structure and molecular dynamic simulations have facilitated development of precise hypotheses for the origin of cationic and anionic pore permeability barriers amenable to experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams CK, Bennett MV (2002) Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc Natl Acad Sci U S A 99(6):3980–3984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abrams CK, Freidin MM et al (2006) Properties of human connexin 31, which is implicated in hereditary dermatological disease and deafness. Proc Natl Acad Sci U S A 103(13):5213–5218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MJ, Gemel J et al (2011) Atomic force microscopy of Connexin40 gap junction hemichannels reveals calcium-dependent three-dimensional molecular topography and open-closed conformations of both the extracellular and cytoplasmic faces. J Biol Chem 286(25):22139–22146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aylsworth CF, Trosko JE et al (1986) Influence of lipids on gap-junction-mediated intercellular communication between Chinese hamster cells in vitro. Cancer Res 46(9):4527–4533

    CAS  PubMed  Google Scholar 

  • Bargiello T, Brink P (2009) Voltage gating mechanisms of connexin channels. In: Harris A, Locke D (eds) Connexins: a guide. Humana Press, Totowa, pp 103–128

    Google Scholar 

  • Barr L, Dewey MM et al (1965) Propagation of action potentials and the structure of the nexus in cardiac muscle. J Gen Physiol 48:797–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrio LC, Suchyna T et al (1991) Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci U S A 88(19):8410–8414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrio LC, Capel J et al (1997) Species-specific voltage-gating properties of connexin-45 junctions expressed in Xenopus oocytes. Biophys J 73(2):757–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beardslee MA, Lerner DL et al (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87(8):656–662

    CAS  PubMed  Google Scholar 

  • Beblo DA, Wang HZ et al (1995) Unique conductance, gating, and selective permeability properties of gap junction channels formed by connexin40. Circ Res 77(4):813–822

    CAS  PubMed  Google Scholar 

  • Ben-Johny M, Yue DT (2014) Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J Gen Physiol 143(6):679–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MV, Barrio LC et al (1991) Gap junctions: new tools, new answers, new questions. Neuron 6(3):305–320

    CAS  PubMed  Google Scholar 

  • Bergoffen J, Scherer SS et al (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262(5142):2039–2042

    CAS  PubMed  Google Scholar 

  • Bevans CG, Harris AL (1999) Direct high affinity modulation of connexin channel activity by cyclic nucleotides. J Biol Chem 274(6):3720–3725

    CAS  PubMed  Google Scholar 

  • Bevans CG, Kordel M et al (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 273(5):2808–2816

    CAS  PubMed  Google Scholar 

  • Beyer EC, Berthoud VM (2009) The family of connexin genes. In: Harris AL, Locke D (eds) Connexins, a guide. Humana Press, New York, pp 3–26

    Google Scholar 

  • Beyer EC, Paul DL et al (1987) Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105(6):2621–2629

    CAS  PubMed  Google Scholar 

  • Beyer EC, Paul DL et al (1990) Connexin family of gap junction proteins. J Membr Biol 116(3):187–194

    CAS  PubMed  Google Scholar 

  • Beyer EC, Lin X et al (2013) Interfering amino terminal peptides and functional implications for heteromeric gap junction formation. Front Pharmacol 4:67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boerma M, Forsberg L et al (1999) A genetic polymorphism in connexin 37 as a prognostic marker for atherosclerotic plaque development. J Intern Med 246(2):211–218

    CAS  PubMed  Google Scholar 

  • Bone LJ, Deschênes SM et al (1997) Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol Dis 4(3–4):221–230

    CAS  PubMed  Google Scholar 

  • Brink PR, Dewey MM (1980) Evidence for fixed charge in the nexus. Nature 285(5760):101–102

    CAS  PubMed  Google Scholar 

  • Brink PR, Cronin K et al (1997) Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 273(4):C1386–C1396

    CAS  PubMed  Google Scholar 

  • Britz-Cunningham SH, Shah MM et al (1995) Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 332(20):1323–1329

    CAS  PubMed  Google Scholar 

  • Bruzzone R, Haefliger JA et al (1993) Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 4(1):7–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bukauskas FF, Peracchia C (1997) Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive. Biophys J 72(5):2137–2142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bukauskas FF, Elfgang C et al (1995) Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflugers Arch 429(6):870–872

    CAS  PubMed  Google Scholar 

  • Burt JM, Spray DC (1989) Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circ Res 65(3):829–837

    CAS  PubMed  Google Scholar 

  • Burt JM, Fletcher AM et al (2001) Alteration of Cx43:Cx40 expression ratio in A7r5 cells. Am J Physiol Cell Physiol 280(3):C500–C508

    CAS  PubMed  Google Scholar 

  • Colussi C, Rosati J et al (2011) Nε-lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart. Proc Natl Acad Sci U S A 108(7):2795–2800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell GT, Burt JM (2001) Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am J Physiol Cell Physiol 281(5):C1559–C1567

    CAS  PubMed  Google Scholar 

  • Cottrell GT, Wu Y et al (2002) Cx40 and Cx43 expression ratio influences heteromeric/ heterotypic gap junction channel properties. Am J Physiol Cell Physiol 282(6):C1469–C1482

    CAS  PubMed  Google Scholar 

  • Dagli ML, Yamasaki H et al (2004) Delayed liver regeneration and increased susceptibility to chemical hepatocarcinogenesis in transgenic mice expressing a dominant-negative mutant of connexin32 only in the liver. Carcinogenesis 25(4):483–492

    CAS  PubMed  Google Scholar 

  • Dahl G (2007) Gap junction-mimetic peptides do work, but in unexpected ways. Cell Commun Adhes 14(6):259–264

    CAS  PubMed  Google Scholar 

  • Dahl G, Qiu F et al (2013) The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology 75:583–593

    CAS  PubMed  Google Scholar 

  • Davidson JS, Baumgarten IM et al (1986) Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Commun 134(1):29–36

    CAS  PubMed  Google Scholar 

  • de Groot JR, Veenstra T et al (2003) Conduction slowing by the gap junctional uncoupler carbenoxolone. Cardiovasc Res 60(2):288–297

    PubMed  Google Scholar 

  • De Mello WC (1983) The influence of pH on the healing-over of mammalian cardiac muscle. J Physiol 339:299–307

    PubMed  PubMed Central  Google Scholar 

  • Délèze J (1970) The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J Physiol 208(3):547–562

    PubMed  PubMed Central  Google Scholar 

  • Derouette JP, Desplantez T et al (2009) Functional differences between human Cx37 polymorphic hemichannels. J Mol Cell Cardiol 46(4):499–507

    CAS  PubMed  Google Scholar 

  • Deschênes SM, Walcott JL et al (1997) Altered trafficking of mutant connexin32. J Neurosci 17(23):9077–9084

    PubMed  PubMed Central  Google Scholar 

  • Dewey MM, Barr L (1962) Intercellular connection between smooth muscle cells: the nexus. Science 137(3531):670–672

    CAS  PubMed  Google Scholar 

  • Dodd R, Peracchia C et al (2008) Calmodulin association with connexin32-derived peptides suggests trans-domain interaction in chemical gating of gap junction channels. J Biol Chem 283(40):26911–26920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson P, Kistler J (1992) Reconstitution of channels from preparations enriched in lens gap junction protein MP70. J Membr Biol 129(2):155–165

    CAS  PubMed  Google Scholar 

  • Duffy HS, Sorgen PL et al (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277(39):36706–36714

    CAS  PubMed  Google Scholar 

  • Dunn CA, Lampe PD (2014) Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 127(2):455–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebihara L, Steiner E (1993) Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol 102(1):59–74

    CAS  PubMed  Google Scholar 

  • Ek-Vitorin JF, King TJ et al (2006) Selectivity of connexin 43 channels is regulated through protein kinase C dependent phosphorylation. Circ Res 98(12):1498–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elfgang C, Eckert R et al (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129(3):805–817

    CAS  PubMed  Google Scholar 

  • Evans WH, Boitano S (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29(Pt 4):606–612

    PubMed  Google Scholar 

  • Fairweather N, Bell C et al (1994) Mutations in the connexin 32 gene in X-linked dominant Charcot-Marie-Tooth disease (CMTX1). Hum Mol Genet 3(1):29–34

    CAS  PubMed  Google Scholar 

  • Firouzi M, Ramanna H et al (2004) Association of human connexin40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circ Res 95(4):e29–e33

    CAS  PubMed  Google Scholar 

  • Firouzi M, Kok B et al (2006) Polymorphisms in human connexin40 gene promoter are associated with increased risk of hypertension in men. J Hypertens 24(2):325–330

    CAS  PubMed  Google Scholar 

  • Flagg-Newton J, Simpson I et al (1979) Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205(4404):404–407

    CAS  PubMed  Google Scholar 

  • Fleishman SJ, Unger VM et al (2004) A Calpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol Cell 15(6):879–888

    CAS  PubMed  Google Scholar 

  • Foote CI, Zhou L et al (1998) The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 140(5):1187–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furshpan EJ, Furukawa T (1962) Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish. J Neurophysiol 25:732–771

    CAS  PubMed  Google Scholar 

  • Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145(2):289–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gemel J, Lin X et al (2006) N-terminal residues in Cx43 and Cx40 determine physiological properties of gap junction channels, but do not influence heteromeric assembly with each other or with Cx26. J Cell Sci 119(Pt 11):2258–2268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gemel J, Lin X et al (2008) Cx30.2 can form heteromeric gap junction channels with other cardiac connexins. Biochem Biophys Res Commun 369(2):388–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gemel J, Simon AR et al (2014) Degradation of a connexin40 mutant linked to atrial fibrillation is accelerated. J Mol Cell Cardiol 74:330–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerido DA, DeRosa AM et al (2007) Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am J Physiol Cell Physiol 293(1):C337–C345

    CAS  PubMed  Google Scholar 

  • Gollob MH, Jones DL et al (2006) Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354(25):2677–2688

    CAS  PubMed  Google Scholar 

  • Gong XQ, Nakagawa S et al (2013) A mechanism of gap junction docking revealed by functional rescue of a human-disease-linked connexin mutant. J Cell Sci 126(14):3113–3120

    CAS  PubMed  Google Scholar 

  • González D, Gómez-Hernández JM et al (2007) Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog Biophys Mol Biol 94(1-2):66–106

    PubMed  Google Scholar 

  • Grifa A, Wagner CA et al (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23(1):16–18

    CAS  PubMed  Google Scholar 

  • Haberland M, Montgomery RL et al (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamill OP, Marty A et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    CAS  PubMed  Google Scholar 

  • Harks EG, de Roos AD et al (2001) Fenamates: a novel class of reversible gap junction channel blockers. J Pharmacol Exp Ther 298(3):1031–1041

    Google Scholar 

  • Harks EG, Camiña JP et al (2003) Besides affecting intracellular calcium signaling, 2-APB reversibly blocks gap junctional coupling in confluent monolayers, thereby allowing measurement of single-cell membrane currents in undissociated cells. FASEB J 17(8):941–943

    CAS  PubMed  Google Scholar 

  • Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94(1-2):120–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris AL, Locke D (2009) Permeability of connexin channels. In: Harris AL, Locke D (eds) Connexins, a guide. Humana Press, NY, pp 165–206

    Google Scholar 

  • Harris AL, Spray DC et al (1981) Kinetic properties of a voltage-dependent junctional conductance. J Gen Physiol 77(1):95–117

    CAS  PubMed  Google Scholar 

  • He DS, Jiang JX et al (1999) Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci U S A 96(11):6495–6500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann SH, Terlau H et al (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356(6368):441–443

    CAS  PubMed  Google Scholar 

  • Hoffman EP (1995) Voltage-gated ion channelopathies: inherited disorders caused by abnormal sodium, chloride, and calcium regulation in skeletal muscle. Annu Rev Med 46:431–441

    CAS  PubMed  Google Scholar 

  • Hopperstad MG, Srinivas M et al (2000) Properties of gap junction channels formed by Cx46 alone and in combination with Cx50. Biophys J 79(4):1954–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Ma M et al (2006) Conductance of connexin hemichannels segregates with the first transmembrane segment. Biophys J 90(1):140–150

    CAS  PubMed  Google Scholar 

  • Imoto K, Busch C et al (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335(6191):645–648

    CAS  PubMed  Google Scholar 

  • Ionasescu V, Searby C et al (1994) Point mutations of the connexin32 (GJB1) gene in X-linked dominant Charcot-Marie-Tooth neuropathy. Hum Mol Genet 3(2):355–358

    CAS  PubMed  Google Scholar 

  • Jan AY, Amin S et al (2004) Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J Invest Dermatol 122(5):1108–1113

    CAS  PubMed  Google Scholar 

  • Jiang JX, Goodenough DA (1996) Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A 93(3):1287–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • John SA, Kondo R et al (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274(1):236–240

    CAS  PubMed  Google Scholar 

  • Johnston MF, Simon SA et al (1980) Interaction of anesthetics with electrical synapses. Nature 286(5772):498–500

    CAS  PubMed  Google Scholar 

  • Kabzińska D, Kotruchow K et al (2011) Two pathogenic mutations located within the 5′-regulatory sequence of the GJB1 gene affecting initiation of transcription and translation. Acta Biochim Pol 58(3):359–363

    PubMed  Google Scholar 

  • Kanter HL, Saffitz JE et al (1992) Cardiac myocytes express multiple gap junction proteins. Circ Res 70(2):438–444

    CAS  PubMed  Google Scholar 

  • Kelsell DP, Dunlop J et al (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387(6628):80–83

    CAS  PubMed  Google Scholar 

  • Kelsell DP, Wilgoss AL et al (2000) Connexin mutations associated with palmoplantar keratoderma and profound deafness in a single family. Eur J Hum Genet 8(2):141–144

    CAS  PubMed  Google Scholar 

  • Kjølbye AL, Knudsen CB et al (2003) Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac-D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly-NH2 (ZP123): in vivo and in vitro studies. J Pharmacol Exp Ther 306(3):1191–1199

    PubMed  Google Scholar 

  • Kouzarides T (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19:1176–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koval M, Molina SA et al (2014) Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 588(8):1193–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalevskaya NV, van de Waterbeemd M et al (2013) Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation. Pflugers Arch 465(11):1507–1519

    CAS  PubMed  Google Scholar 

  • Krattinger N, Capponi A et al (2007) Connexin40 regulates renin production and blood pressure. Kidney Int 72(7):814–822

    CAS  PubMed  Google Scholar 

  • Kronengold J, Trexler EB et al (2003) Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels. J Gen Physiol 122(4):389–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84(3):381–388

    CAS  PubMed  Google Scholar 

  • Kwon T, Harris AL et al (2011) Molecular dynamics simulations of the Cx26 hemichannel: evaluation of structural models with Brownian dynamics. J Gen Physiol 138(5):475–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:193–212

    CAS  PubMed  Google Scholar 

  • Lin X, Fenn E et al (2006) An amino-terminal lysine residue of rat connexin40 that is required for spermine block. J Physiol 570(2):251–269

    CAS  PubMed  Google Scholar 

  • Lin X, Zemlin C et al (2008) Enhancement of ventricular gap-junction coupling by rotigaptide. Cardiovasc Res 79(3):416–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Xu Q et al (2014) Functional formation of heterotypic gap junction channels by connexins-40 and -43. Channels 8(5):433–443

    PubMed  PubMed Central  Google Scholar 

  • Listì F, Candore G et al (2005) Association between C1019T polymorphism of connexin37 and acute myocardial infarction: a study in patients from Sicily. Int J Cardiol 102(2):269–271

    PubMed  Google Scholar 

  • Liu XZ, Xia XJ et al (2001) Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 10(25):2945–2951

    CAS  PubMed  Google Scholar 

  • Locke D, Bian S et al (2009) Post-translational modifications of connexin26 revealed by mass spectrometry. Biochem J 424(3):385–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loewenstein WR (1966) Permeability of membrane junctions. Ann N Y Acad Sci 137(2):441–472

    CAS  PubMed  Google Scholar 

  • Loewenstein WR (1976) Permeable junctions. Cold Spring Harb Symp Quant Biol 40:49–63

    CAS  PubMed  Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61(4):829–913

    CAS  PubMed  Google Scholar 

  • Loewenstein WR, Socolar SJ et al (1965) Intercellular communication: renal, urinary bladder, sensory, and salivary gland cells. Science 149(3681):295–298

    CAS  PubMed  Google Scholar 

  • Loewenstein WR, Kanno Y et al (1978) Quantum jumps of conductance during formation of membrane channels at cell-cell junction. Nature 274(5667):133–136

    CAS  PubMed  Google Scholar 

  • López-Bigas N, Olivé M et al (2001) Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet 10(9):947–952

    PubMed  Google Scholar 

  • Ma M, Dahl G (2006) Cosegregation of permeability and single-channel conductance in chimeric connexins. Biophys J 90(1):151–163

    CAS  PubMed  Google Scholar 

  • Macari F, Landau M et al (2000) Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet 67(5):1296–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay D, Ionides A et al (1999) Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 64(5):1357–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda S, Nakagawa S et al (2009) Structure of the connexin 26 gap junction channel at 3.5 a resolution. Nature 458(7238):597–602

    CAS  PubMed  Google Scholar 

  • Makita N, Sasaki K et al (2005) Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm 2(10):1128–1134

    PubMed  Google Scholar 

  • Makita N, Seki A et al (2012) A connexin40 mutation associated with a malignant variant of progressive familial heart block type I. Circ Arrhythm Electrophysiol 5(1):163–172

    PubMed  PubMed Central  Google Scholar 

  • Makowski L, Caspar DL et al (1977) Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol 74(2):629–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunath CK, Goings GE et al (1985) Proteolysis of cardiac gap junctions during their isolation from rat hearts. J Membr Biol 85(2):159–168

    CAS  PubMed  Google Scholar 

  • Manthey D, Bukauskas F et al (1999) Molecular cloning and functional expression of the mouse gap junction gene connexin-57 in human HeLa cells. J Biol Chem 274(21):14716–14723

    CAS  PubMed  Google Scholar 

  • Menichella DM, Goodenough DA et al (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23(13):5963–5973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mese G, Sellitto C et al (2011) The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol Biol Cell 22(24):4776–4786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer J, Mai M et al (2002) Mutational analysis of the connexin 36 gene (CX36) and exclusion of the coding sequence as a candidate region for catatonic schizophrenia in a large pedigree. Schizophr Res 58(1):87–91

    PubMed  Google Scholar 

  • Moreno AP, de Carvalho AC et al (1991) Voltage-dependent gap junction channels are formed by connexin32, the major gap junction protein of rat liver. Biophys J 59(4):920–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno AP, Sáez JC et al (1994) Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res 74(6):1050–1057

    CAS  PubMed  Google Scholar 

  • Moreno AP, Chanson M et al (2002) Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating. Circ Res 90(4):450–457

    CAS  PubMed  Google Scholar 

  • Morley GE, Taffet SM et al (1996) Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 70(3):1294–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller DJ, Hand GM et al (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21(14):3598–3607

    PubMed  PubMed Central  Google Scholar 

  • Musa H, Veenstra RD (2003) Voltage-dependent blockade of connexin40 gap junctions by spermine. Biophys J 84(1):205–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Musa H, Fenn E et al (2004) Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions. J Physiol 557(3):863–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Gong XQ et al (2011) Asparagine 175 of connexin32 is a critical residue for docking and forming functional heterotypic gap junction channels with connexin26. J Biol Chem 286(22):19672–19681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neyton J, Trautmann A (1985) Single-channel currents of an intercellular junction. Nature 317(6035):331–335

    CAS  PubMed  Google Scholar 

  • Oh S, Rubin JB et al (1999) Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J Gen Physiol 114(3):339–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh S, Abrams CK et al (2000) Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J Gen Physiol 116(1):13–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omori Y, Mesnil M et al (1996) Connexin 32 mutations from X-linked Charcot-Marie-Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7(6):907–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima A, Tani K et al (2007) Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proc Natl Acad Sci U S A 104(24):10034–10039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima A, Tani K et al (2011) Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels. J Mol Biol 405(3):724–735

    CAS  PubMed  Google Scholar 

  • Paul DL (1986) Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 103(1):123–134

    CAS  PubMed  Google Scholar 

  • Paul DL, Ebihara L et al (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115(4):1077–1089

    CAS  PubMed  Google Scholar 

  • Paznekas WA, Boyadjiev SA et al (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72(2):408–418

    CAS  PubMed  Google Scholar 

  • Paznekas WA, Karczeski B et al (2009) GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30(5):724–733

    CAS  PubMed  Google Scholar 

  • Peracchia C (1984) Communicating junctions and calmodulin: inhibition of electrical uncoupling in Xenopus embryo by calmidazolium. J Membr Biol 81(1):49–58

    CAS  PubMed  Google Scholar 

  • Peracchia C (1990) Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration. J Membr Biol 113(1):75–92

    CAS  PubMed  Google Scholar 

  • Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662(1-2):61–80

    CAS  PubMed  Google Scholar 

  • Peracchia C, Chen JT et al (2004) CO(2) sensitivity of voltage gating and gating polarity of gapjunction channels–connexin40 and its COOH-terminus-truncated mutant. J Membr Biol 200(2):105–113

    CAS  PubMed  Google Scholar 

  • Pfahnl A, Dahl G (1999) Gating of Cx46 gap junction hemichannels by calcium and voltage. Pflugers Arch 437(3):345–353

    CAS  PubMed  Google Scholar 

  • Pfahnl A, Zhou XW et al (1997) A chimeric connexin forming gap junction hemichannels. Pflugers Arch 433(6):773–779

    CAS  PubMed  Google Scholar 

  • Purnick PE, Benjamin DC et al (2000) Structure of the amino terminus of a gap junction protein. Arch Biochem Biophys 381(2):181–190

    CAS  PubMed  Google Scholar 

  • Rackauskas M, Kreuzberg MM et al (2007) Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys J 92(6):1952–1965

    CAS  PubMed  Google Scholar 

  • Ravier MA, Güldenagel M et al (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54(6):1798–1807

    CAS  PubMed  Google Scholar 

  • Reed KE, Westphale EM et al (1993) Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J Clin Invest 91(3):997–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Retamal MA, Cortés CJ et al (2006) S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A 103(12):4475–4480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33(3):C7–C12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla A, Castro C et al (1999) Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions. Biophys J 77(3):1374–1383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla A, Bennett MV et al (2000) Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc Natl Acad Sci U S A 97(26):14760–14765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ri Y, Ballesteros JA, Abrams CK et al (1999) The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophys J 76(6):2887–2898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard G, Rouan F et al (2002) Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet 70(5):1341–1348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose B, Rick R (1978) Intracellular pH, intracellular free Ca, and junctional cell-cell coupling. J Membr Biol 44(3–4):377–415

    CAS  PubMed  Google Scholar 

  • Rossman EI, Liu K et al (2009) The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model. J Pharmacol Exp Ther 329(3):1127–1133

    CAS  PubMed  Google Scholar 

  • Salviati L, Trevisson E et al (2007) A novel deletion in the GJA12 gene causes Pelizaeus-Merzbacher-like disease. Neurogenetics 8(1):57–60

    CAS  PubMed  Google Scholar 

  • Sánchez HA, Mese G et al (2010) Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome. J Gen Physiol 136(1):47–62

    PubMed  PubMed Central  Google Scholar 

  • Shao Q, Liu Q et al (2012) Structure and functional studies of N-terminal Cx43 mutants linked to oculodentodigital dysplasia. Mol Biol Cell 23(17):3312–3321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi HF, Yang JF et al (2013) Prevalence and spectrum of GJA5 mutations associated with lone atrial fibrillation. Mol Med Rep 7(3):767–774

    CAS  PubMed  Google Scholar 

  • Shibayama J, Lewandowski R et al (2007) Identification of a novel peptide that interferes with the chemical regulation of connexin43. Circ Res 98(11):1365–1372

    Google Scholar 

  • Shiels A, Mackay D et al (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62(3):526–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skerrett IM, Aronowitz J et al (2002) Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol 159(2):349–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skyschally A, Walter B et al (2013) The antiarrhythmic dipeptide ZP1609 (danegaptide) when given at reperfusion reduces myocardial infarct size in pigs. Naunyn Schmiedebergs Arch Pharmacol 386(5):383–391

    CAS  PubMed  Google Scholar 

  • Smith TD, Mohankumar A et al (2012) Cytoplasmic amino acids within the membrane interface region influence connexin oligomerization. J Membr Biol 245(5–6):221–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solan JL, Lampe PD (2005) Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711(2):154–163

    CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2014) Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 588(8):1423–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solan JL, Marquez-Rosado L et al (2007) Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. J Cell Biol 179(6):1301–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spray DC, Harris AL et al (1981a) Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol 77(1):77–93

    CAS  PubMed  Google Scholar 

  • Spray DC, Harris AL et al (1981b) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211(4483):712–715

    CAS  PubMed  Google Scholar 

  • Srinivas M, Costa M et al (1999a) Voltage dependence of macroscoic and unitary currents of gap junction channels formed by mouse Cx50 expressed in rat neuroblastoma cells. J Physiol 517(3):673–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas M, Rozental R et al (1999b) Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci 19(22):9848–9855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stauffer KA (1995) The gap junction proteins beta 1-connexin (connexin-32) and beta-2 connexin (connexin-26) can form heteromeric hemichannels. J Biol Chem 270(12):6768–6772

    CAS  PubMed  Google Scholar 

  • Suchyna TM, Xu LX et al (1993) Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature 365(6449):847–849

    CAS  PubMed  Google Scholar 

  • Suchyna TM, Nitsche JM et al (1999) Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels. Biophys J 77(6):2968–2987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Ahmad S et al (2005) Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 288(3):C613–C623

    CAS  PubMed  Google Scholar 

  • Swenson KI, Piwnica-Worms H et al (1990) Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60v-src-induced inhibition of communication. Cell Regul 1(13):989–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takens-Kwak BR, Jongsma HJ (1992) Cardiac gap junctions: three distinct single channel conductances and their modulation by phosphorylating treatments. Pflugers Arch 422(2):198–200

    CAS  PubMed  Google Scholar 

  • Teubner B, Degen J et al (2000) Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J Membr Biol 176(3):249–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teubner B, Odermatt B et al (2001) Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 21(4):1117–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thibodeau IL, Xu J et al (2010) Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation 122(3):236–244

    CAS  PubMed  Google Scholar 

  • Tong JJ, Liu X et al (2004) Exchange of gating properties between rat cx46 and chicken cx45.6. Biophys J 87(4):2397–2406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traub O, Eckert R et al (1994) Immunochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells. Eur J Cell Biol 64(1):101–112

    CAS  PubMed  Google Scholar 

  • Trexler EB, Bennett MV et al (1996) Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci U S A 93(12):5836–5841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turin L, Warner AE (1980) Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres. J Physiol 300:489–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unger VM, Kumar NM et al (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283(5405):1176–1180

    CAS  PubMed  Google Scholar 

  • Unwin PN, Ennis PD (1984) Two configurations of a channel-forming membrane protein. Nature 307(5952):609–613

    CAS  PubMed  Google Scholar 

  • Valiunas V, Niessen H et al (1999) Electrophysiological properties of gap junction channels in hepatocytes isolated from connexin32-deficient and wild-type mice. Pflugers Arch 437(6):846–856

    CAS  PubMed  Google Scholar 

  • Valiunas V, Weingart R et al (2000) Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 86(2):E42–E49

    CAS  PubMed  Google Scholar 

  • Valiunas V, Gemel J et al (2001) Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol Heart Circ Physiol 281(4):H1675–H1689

    CAS  PubMed  Google Scholar 

  • Valiunas V, Beyer EC et al (2002) Cardiac gap junction channels show quantitative differences in selectivity. Circ Res 91(2):104–111

    CAS  PubMed  Google Scholar 

  • Vaughan-Jones RD, Lederer WJ et al (1983) Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature 301(5900):522–524

    CAS  PubMed  Google Scholar 

  • Veenstra RD (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28(4):327–337

    CAS  PubMed  Google Scholar 

  • Veenstra RD, DeHaan RL (1986) Measurement of single channel currents from cardiac gap junctions. Science 233(4767):972–974

    CAS  PubMed  Google Scholar 

  • Veenstra RD, DeHaan RL (1988) Cardiac gap junction channel activity in embryonic chick ventricle cells. Am J Physiol 254(1):H170–H180

    CAS  PubMed  Google Scholar 

  • Veenstra RD, Wang HZ et al (1992) Multiple connexins confer distinct regulatory and conductance properties of gap junctions in developing heart. Circ Res 71(5):1277–1283

    CAS  PubMed  Google Scholar 

  • Veenstra RD, Wang HZ et al (1994a) Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys J 66(6):1915–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veenstra RD, Wang HZ et al (1994b) Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ Res 75(3):483–490

    CAS  PubMed  Google Scholar 

  • Veenstra RD, Wang HZ et al (1995) Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ Res 77(6):1156–1165

    CAS  PubMed  Google Scholar 

  • Verselis VK (2009) The connexin channel pore: pore-lining segments and residues. In: Harris AL, Locke D (eds) Connexins, a guide. Humana Press, New York, pp 77–102

    Google Scholar 

  • Verselis VK, Ginter CS et al (1994) Opposite voltage gating polarities of two closely related connexins. Nature 368(6469):348–351

    CAS  PubMed  Google Scholar 

  • Vessey JP, Lalonde MR et al (2004) Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina. J Neurophysiol 92(2):1252–1256

    CAS  PubMed  Google Scholar 

  • Wagner C, de Wit C et al (2007) Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100(4):556–563

    CAS  PubMed  Google Scholar 

  • Wang XG, Peracchia C (1997) Positive charges of the initial C-terminus domain of Cx32 inhibit gap junction gating sensitivity to CO2. Biophys J 73(2):798–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ma M et al (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293(3):C1112–C1119

    CAS  PubMed  Google Scholar 

  • Wang N, De Bock M et al (2013) Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology 75:506–516

    CAS  PubMed  Google Scholar 

  • Warn-Cramer BJ, Lampe PD et al (1996) Characterization of the MAP kinase phosphorylation sites on the connexin43 gap junction protein. J Biol Chem 271(7):3779–3786

    CAS  PubMed  Google Scholar 

  • Warner A, Clements DK et al (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488(3):721–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weidmann S (1952) The electrical constant of Purkinje fibers. J Physiol 118(3):348–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh MJ, Aster JC et al (1982) Calmodulin binds to chick lens gap junction protein in a calcium-independent manner. Science 216(4546):642–644

    CAS  PubMed  Google Scholar 

  • White TW, Srinivas M et al (2002) Virtual cloning, functional expression, and gating analysis of human connexin31.9. Am J Physiol Cell Physiol 283(3):C960

    CAS  PubMed  Google Scholar 

  • Wilgoss A, Leigh IM et al (1999) Identification of a novel mutation R42P in the gap junction protein beta-3 associated with autosomal dominant erythrokeratoderma variabilis. J Invest Dermatol 113(6):1119–1122

    CAS  PubMed  Google Scholar 

  • Xin L, Gong XQ et al (2010) The role of amino terminus of mouse Cx50 in determining transjunctional voltage-dependent gating and unitary conductance. Biophys J 99(7):2077–2086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Lin X et al (2012) Gating of connexin 43 gap junctions by a cytoplasmic loop calmodulin binding domain. Am J Physiol Cell Physiol 302(10):C1548–C1556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Lin X et al (2013) Histone deacetylase inhibition reduces cardiac connexin43 expression and gap junction communication. Front Pharmacol 4:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Ellinor PT et al (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366(6451):158–161

    CAS  PubMed  Google Scholar 

  • Yang YQ, Liu X et al (2010) Novel connexin40 missense mutations in patients with familial atrial fibrillation. Europace 12(10):1421–1427

    PubMed  Google Scholar 

  • Yellen G, Jurman ME et al (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251(4996):939–942

    CAS  PubMed  Google Scholar 

  • Yum SW, Zhang J et al (2007) Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol 293(3):C1032–C1048

    CAS  PubMed  Google Scholar 

  • Zhang JT, Nicholson BJ (1989) Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol 109(6):3391–3401

    CAS  PubMed  Google Scholar 

  • Zhou XW, Pfahnl A et al (1997) Identification of a pore lining segment in gap junction hemichannels. Biophys J 72(5):1946–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Yang W et al (2007) Identification of the calmodulin binding domain of connexin 43. J Biol Chem 282(48):35005–35017

    CAS  PubMed  Google Scholar 

  • Zonta F, Polles G et al (2012) Permeation pathway of homomeric connexin 26 and connexin 30 channels investigated by molecular dynamics. J Biomol Struct Dyn 29(5):985–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Salarian M et al (2014) Gap junction regulation by calmodulin. FEBS Lett 588(8):1430–1438

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Veenstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Veenstra, R.D. (2015). Gap Junction Channels: The Electrical Conduit of the Intercellular World. In: Delcour, A.H. (eds) Electrophysiology of Unconventional Channels and Pores. Springer Series in Biophysics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-20149-8_13

Download citation

Publish with us

Policies and ethics