Skip to main content
Log in

Exploring thermal dynamics of polyaniline-modified paraffin wax phase change material with varied PANI loadings (1–4% wt.)

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this experimental study, we explore the potential enhancements in thermal conductivity while investigating alterations in latent heat and phase change temperature within Composite Phase Change Materials (PCMs). These composites consist of Paraffin Wax (PW) as the base material, incorporating dispersed conducting Polyaniline (PANI) powder in varying concentrations ranging from 1% wt. to 4% wt. The mass fractions of PANI added to PW include 1%, 2%, 3%, and 4%, and the composite PCMs are meticulously prepared through ultrasonication. Examining the surface morphology of Composite Phase Change Materials (PCMs) involved utilizing a Scanning Electron Microscope (SEM), while the determination of thermal conductivity employed a Heat Flow Meter. Additionally, latent heat and phase change temperatures were assessed through Differential Scanning Calorimetry (DSC). The obtained results indicate an augmentation in the thermal conductivity of the composites when compared to Paraffin Wax (PW). Specifically, thermal conductivity exhibited a 40% increase for 1% wt. of PANI, yet experienced a subsequent decline for the remaining weight percentages. Furthermore, the latent heat and phase change temperatures of the composites were observed to decrease in comparison to PW. These composite PCMs with enhanced thermal conductivity, achieved through the incorporation of Polyaniline in Paraffin Wax, are highly potential for several applications in energy storage systems, thermal regulation devices, and heat management technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

°C :

Degree centigrade

K :

Thermal conductivity, W/(mK)

k comp :

Thermal conductivity of composite PCMs, W/(mK)

k pw :

Thermal conductivity of PW, W/(mK)

ΔHcomp :

Latent heat of composite PCMs, kJ/kg

ΔHpw :

Latent heat of PW, kJ/kg

mW :

Milli Watts

%Wt. :

Percent weight

Ψ :

Psi, %

DSC:

Differential Scanning Calorimetry

PANI:

Polyaniline

SEM:

Scanning Electron Microscope

PW:

Paraffin Wax

PWPA:

Paraffin Wax Polyaniline

References

  1. Qureshi ZA, Ali HM, Khushnood S (2018) Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf 127:838–856. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049

    Article  CAS  Google Scholar 

  2. Kumar P, Manoj K, Mylsamy KB, Prakash M, Nithish AR (2021) Investigating thermal properties of Nanoparticle Dispersed Paraffin (NDP) as phase change material for thermal energy storage. Materials Today: Proceedings 45:745–750. https://doi.org/10.1016/j.matpr.2020.02.800

    Article  CAS  Google Scholar 

  3. Manoj Kumar P, Mylsamy K, Alagar K, Sudhakar K (2020) Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. Int J Green Energy 17(13):872–883. https://doi.org/10.1080/15435075.2020.1809426

    Article  CAS  Google Scholar 

  4. Tariq SL, Ali HM, Akram MA, Janjua MM, Ahmadlouydarab M (2020) Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Appl Therm Eng 176:115305. https://doi.org/10.1016/j.applthermaleng.2020.115305

    Article  Google Scholar 

  5. Yang L, Huang J-N, Zhou F (2020) Thermophysical properties and applications of nano-enhanced PCMs: an update review. Energy Conv Manag 214:112876. https://doi.org/10.1016/j.enconman.2020.112876

    Article  CAS  Google Scholar 

  6. George M, Pandey AK, Abd Rahim N, Tyagi VV, Shahabuddin S, Saidur R (2020) A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Sol Energy 204:448–458. https://doi.org/10.1016/j.solener.2020.04.087

    Article  ADS  CAS  Google Scholar 

  7. Ho CJ, Gao JY (2009) Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass Transfer 36(5):467–470. https://doi.org/10.1016/j.icheatmasstransfer.2009.01.015

    Article  CAS  Google Scholar 

  8. Wang J, Xie H, Guo Z, Guan L, Li Y (2014) Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng 73(2):1541–1547. https://doi.org/10.1016/j.applthermaleng.2014.05.078

    Article  CAS  Google Scholar 

  9. Owolabi AL, Hussain HH, Baheta AT (2016) Nanoadditives induced enhancement of the thermal properties of paraffin-based nanocomposites for thermal energy storage. Sol Energy 135:644–653. https://doi.org/10.1016/j.solener.2016.06.008

    Article  ADS  CAS  Google Scholar 

  10. Jebasingh BE, Arasu AV (2020) A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater 24:52–74. https://doi.org/10.1016/j.ensm.2019.07.031

    Article  Google Scholar 

  11. Xin T, Tang S, Ji F, Cui L, He B, Lin X,... Ferry M (2022) Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing. Acta Materialia 239:118248. https://doi.org/10.1016/j.actamat.2022.118248

  12. Silakhori M, Metselaar HSC, Mahlia TMI, Fauzi H (2014) Preparation and characterisation of microencapsulated paraffin wax with polyaniline-based polymer shells for thermal energy storage. Mater Res Innovations 18(Sup6):S6-480. https://doi.org/10.1179/1432891714Z.0000000001029

    Article  Google Scholar 

  13. Chauhan NP, Mozafari M (2019) Polyaniline: future perspectives. Fundamentals and emerging applications of Polyaniline. Elsevier, pp 273–280. https://doi.org/10.1016/B978-0-12-817915-4.00015-4

    Book  Google Scholar 

  14. Kalidasan B, Pandey AK, Shahabuddin S, George M, Sharma K, Samykano M, Tyagi VV, Saidur R (2021) Synthesis and characterization of conducting polyaniline@ cobalt-paraffin wax nanocomposite as nano-phase change material: enhanced thermophysical properties. Renew Energy 173:1057–1069. https://doi.org/10.1016/j.renene.2021.04.050

    Article  CAS  Google Scholar 

  15. Lin SC, Al-Kayiem HH (2016) Evaluation of copper nanoparticles–paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278. https://doi.org/10.1016/j.solener.2016.03.004

    Article  ADS  CAS  Google Scholar 

  16. Jesumathy PS (2018) Latent heat thermal energy storage system. In: Phase change materials and their applications. IntechOpen. https://doi.org/10.5772/intechopen.77177

    Article  Google Scholar 

  17. Wang H, Huang Z, Zeng X, Li J, Zhang Y, Hu Q (2023) Enhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networks. ACS Appl Electron Mater 5(7):3726–3732. https://doi.org/10.1021/acsaelm.3c00451

    Article  CAS  Google Scholar 

  18. Yang S, Huang Z, Hu Q, Zhang Y, Wang F, Wang H, Shu Y (2022) Proportional optimization model of Multiscale spherical BN for enhancing thermal conductivity. ACS Appl Electron Mater 4(9):4659–4667. https://doi.org/10.1021/acsaelm.2c00878

    Article  CAS  Google Scholar 

  19. Wang J, Pan Z, Wang Y, Wang L, Su L, Cuiuri D, Li H (2020) Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Additive Manuf 34:101240. https://doi.org/10.1016/j.addma.2020.101240

    Article  CAS  Google Scholar 

  20. Navarrete N, Mondragón R, Wen D, Navarro ME, Ding Y, Juliá JE (2019) Thermal energy storage of molten salt–based nanofluid containing nano-encapsulated metal alloy phase change materials. Energy 167:912–920. https://doi.org/10.1016/j.energy.2018.11.037

    Article  CAS  Google Scholar 

  21. Wu S, Kuai TYZ, Pan W (2020) Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Mater 25:251–295. https://doi.org/10.1016/j.ensm.2019.10.010

    Article  Google Scholar 

  22. Zhu L, Gao M, Peh CK, Ho GW (2019) Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy 57:507–518. https://doi.org/10.1016/j.nanoen.2018.12.046

    Article  CAS  Google Scholar 

  23. Li D, Cheng X, Li Y, Zou H, Yu G, Li G, Huang Y (2018) Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material. Sol Energy 171:142–149. https://doi.org/10.1016/j.solener.2018.06.062

    Article  ADS  CAS  Google Scholar 

  24. Zhang Z, Zhang N, Peng J, Fang X, Gao X (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91(1):426–431. https://doi.org/10.1016/j.apenergy.2011.10.014

    Article  ADS  CAS  Google Scholar 

  25. Halvaee M, Didehban K, Goodarzi V, Ghaffari M, Ehsani M, Saeb MR (2017) Comparison of pristine and polyaniline grafted MWCNT s as conductive sensor elements for phase change materials: thermal conductivity trend analysis. J Appl Polym Sci 134(47):45389

    Article  Google Scholar 

  26. Zeng J-L, Zhu F-R, Yu S-B, Xiao Z-L, Zheng W-PYS-H, Zhang L, Sun L-X, Cao Z (2013) Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 114:136–140. https://doi.org/10.1016/j.solmat.2013.03.006

    Article  CAS  Google Scholar 

  27. Afzal A, Saleel CA, Badruddin IA, Khan TMY, Kamangar S, Mallick Z, Samuel OD, Soudagar MEM (2020) Human thermal comfort in passenger vehicles using an organic phase change material– an experimental investigation, neural network modelling, and optimization. Build Environ 180:107012. https://doi.org/10.1016/j.buildenv.2020.107012

    Article  Google Scholar 

  28. Jilte R, Afzal A, Panchal SA (2021) A novel battery thermal management system using nano-enhanced phase change materials. Energy 219:119564. https://doi.org/10.1016/j.energy.2020.119564

    Article  CAS  Google Scholar 

  29. Jilte R, Afzal A, Islam MT, Manokar AM (2021) Hybrid cooling of cylindrical battery with liquid channels in phase change material. Int J Energy Res. https://doi.org/10.1002/er.6590

    Article  Google Scholar 

  30. Afzal A (2021) Optimization of thermal management in modern electric vehicle battery cells employing genetic algorithm. J Heat Transfer 143:1–12. https://doi.org/10.1115/1.4052197

    Article  CAS  Google Scholar 

  31. Sheik MA, Aravindan MK, Beemkumar N, Chaurasiya PK, Jilte R, Shaik S, Afzal A (2022) Investigation on the thermal management of solar photo voltaic cells cooled by phase change material. J Energy Storage 52:104914. https://doi.org/10.1016/j.est.2022.104914

    Article  Google Scholar 

  32. Singh PK, Nagar S, Singh M (2021) Experimental analysis of thermal efficiency of functionalized graphene (COOH) reinforced PCM for thermal energy storage system. IOP Conf Series Mater Sci Eng 1116:012008. https://doi.org/10.1088/1757-899X/1116/1/012008

    Article  CAS  Google Scholar 

  33. Nagar S, Sharma K, Singh M, Kumar P, Pandey AK (2022) Charging analysis and characterizations of COOH group functionalized graphene combined with paraffin wax as phase change material for thermal energy storage applications. J Therm Anal Calorim 147(20):11021–11038. https://doi.org/10.1007/s10973-022-11365-w

    Article  CAS  Google Scholar 

  34. Wang Y, Ji H, Shi H, Zhang T, Xia T (2015) Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage. Energy Conv Manag 98:322–330. https://doi.org/10.1016/j.enconman.2015.03.115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through small group Research Project under grant number RGP 1/80/44. The authors would like to acknowledge the support provided by the iRMC of Universiti Tenaga Nasional (UNITEN), School of Science, Edith Cowan University, Australia, and the School of Engineering, Technology, Central Queensland University Australia, Melbourne, VIC 3000, Australia.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through small group Research Project under grant number RGP 1/80/44.

Author information

Authors and Affiliations

Authors

Contributions

J. Emeema, and M. Govindarajan: performed the experimental work, visualization, data analysis, and writing the manuscript draft, B. V. Reddi, M. Murugan, E. P. Venkatesan, C. A. Saleel, M. Alwetaishi, and S. Shaik: Discussion, Data curation, Data Analytics, and writing and review the manuscript, and M.Nur-E-Alam, and M.E.M. Soudagar: Visualization, Validation, Data curation, Data Analytics, supervision, and writing and review the manuscript.

Corresponding author

Correspondence to Elumalai Perumal Venkatesan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janumala, E., Govindarajan, M., Reddi, B.V. et al. Exploring thermal dynamics of polyaniline-modified paraffin wax phase change material with varied PANI loadings (1–4% wt.). Heat Mass Transfer (2024). https://doi.org/10.1007/s00231-024-03454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00231-024-03454-3

Navigation