Skip to main content

Advertisement

Log in

Experimental investigation on additive manufactured single and curved double layered microchannel heat sink with nanofluids

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

For the latest high density compact devices, thermal management is crucial for their effective heat dissipation and system reliability. In literature, microchannel heat sink has been established as one of the advanced heat transfer techniques to fulfill the cooling demands of high power electronic applications. However, maldistribution in microchannels causes flow induced high temperature zones (FITZ) which reduces the electrical performance owing to electrical-thermal instability of the integrated chips. One way to mitigate the FITZ is by allowing more coolant inlets in these zones. In the current study, this is achieved by redesigning double layer microchannel heat sink (DMCHS) specific to the FITZ of I-type microchannel configuration using additive manufacturing (AM). Two AM microchannels were tested, one is a single layer microchannel heat sink (MCHS) and another one is a curved double layer microchannel (C-DMCHS). The curved channels were introduced in the bottom channels of C-DMCHS to mitigate FITZ compared to conventional DMCHS. AM microchannels are compared for Nusselt number and friction factor characteristics with the conventional straight channels, and heat treated AM microchannels. From experimental observation, Ti64 3D printed microchannel with Graphene oxide (GO-0.12%) nanofluid developed 75.4% more pressure drop than the Ti64 heat treated microchannel. The results additionally show that the C-DMCHS delivered 26.5% lower FITZ temperature than MCHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

DMLS:

Direct metal laser sintering

µ-WEDM:

Micro-wire electric discharge machining

FITZ:

Flow induced high temperature zone

ABS:

Acrylonitrile butadiene styrene

GO:

Graphene oxide

MCHS:

Microchannel heat sink

DMCHS:

Double layer microchannel heat sink

C-DMCHS:

Curved- double layer microchannel heat sink

AM:

Additive manufacturing

EDM:

Electron beam melting

SLM:

Selective beam melting

HSS:

High speed steel

FHU:

Fluid handling unit

IN718:

Inconel

Ti64:

Titanium alloy

hx :

Heat transfer coefficient (W/m2 K)

Tw :

Wall temperature (°C)

Tf :

Fluid temperature (°C)

Tmax :

Maximum temperature of the sink (°C)

tout, LC :

Lower channel outlet temperature (°C)

tout :

Outlet temperature (°C)

tin :

Inlet temperature (°C)

th :

Temperature of the heater (°C)

LC, Fin :

Lower channel fluid inlet

LC, Fout :

Lower channel fluid outlet

LC, Pin :

Lower channel pressure inlet (kPa)

LC, Pout :

Lower channel pressure outlet (kPa)

Fin :

Fluid inlet

Fout :

Fluid outlet

Pin :

Pressure inlet (kPa)

Pout :

Pressure outlet (kPa)

Pp :

Pumping power (W)

Lc :

Lower channel

Uc :

Upper channel

Ra:

Surface roughness

uin :

Inlet velocity (m/s)

N:

Number of channels

Ach :

Area of the cross section (mm2).

Nux :

Nusselt number

Dh :

Hydraulic diameter of the channel (µm)

Re:

Reynolds number

kf :

Thermal conductivity of the working fluid (W/mK)

\({q}^{\prime\prime}\)  :

Heat flux (W/m2)

\(\dot{m}\) :

Mass flow rate (kg/s)

a:

Length of the channel (mm)

b:

Breadth of the channel (mm)

Cp :

Specific heat capacity (J/kgK)

d:

Average nanoparticle diameter (nm)

Ri :

Interfacial thermal resistance

Q:

Volumetric flow rate (L/min)

t1, t2, t3 :

Thermocouple locations in the microchananel

havg :

Average heat transfer coefficient

Nuavg :

Average Nusselt number

\(\eta\) :

Thermal enhancement factor

fhs :

Friction factor of the heat treated heat sink

fc :

Friction factor of the conventional heat sink

R:

Total thermal resistance (°C/Wm2)

Qh :

Total heat load generated by the chip (W)

µ:

Dynamic viscosity (mPa.s)

ρ:

Density (kg/m3)

ϕ:

Volume fraction of nanoparticles (%)

\(\alpha\) :

Kapitza constant

Δ:

Differential difference

x:

Location of the thermocouple measurement

w:

Microchannel wall

f:

Fluid

avg:

Average

in:

Inlet

out:

Outlet

p:

Particle

nf :

Nanofluid

bf :

Basefluid

ch:

Cross section

References

  1. Tofail SAM, Koumoulos EP, Bandyopadhyay A et al (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater today 21:22–37

    Article  Google Scholar 

  2. Zhai Y, Lados DA, LaGoy JL (2014) Additive manufacturing: making imagination the major limitation. Jom 66:808–816

    Article  Google Scholar 

  3. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754

    Article  Google Scholar 

  4. Fotovvati B, Asadi E (2019) Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts. Int J Adv Manuf Technol 104:2951–2959

    Article  Google Scholar 

  5. Arivarasu M, Roshith P, Padmanaban R et al (2017) Investigations on metallurgical and mechanical properties of CO2 laser beam welded Alloy 825. Can J Metall Mater Sci 56:232–244. https://doi.org/10.1080/00084433.2017.1315847

    Article  Google Scholar 

  6. Balamurugan P, Selvakumar N (2021) Development of patient specific dental implant using 3D printing. J Ambient Intell Humaniz Comput 12:3549–3558. https://doi.org/10.1007/s12652-020-02758-6

    Article  Google Scholar 

  7. Keleş Ö, Blevins CW, Bowman KJ (2017) Effect of build orientation on the mechanical reliability of 3D printed ABS. Rapid Prototyp J 23:320–328. https://doi.org/10.1108/RPJ-09-2015-0122

    Article  Google Scholar 

  8. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf 35:1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089

    Article  Google Scholar 

  9. Burns M, Wangenheim C (2019) Metal 3D printing applications in the oil & gas industry. SPE Middle East Oil Gas Show Conf MEOS, Proc 2019-March:18–21. https://doi.org/10.2118/194787-ms

  10. Duda T, Raghavan LV (2018) 3D metal printing technology: the need to re-invent design practice. AI Soc 33:241–252. https://doi.org/10.1007/s00146-018-0809-9

    Article  Google Scholar 

  11. Pignatelli F, Percoco G (2022) An application- and market-oriented review on large format additive manufacturing, focusing on polymer pellet-based 3D printing. Prog Addit Manuf. https://doi.org/10.1007/s40964-022-00309-3

    Article  Google Scholar 

  12. Jha SK (2016) Emerging technologies: Impact on shipbuilding. Marit Aff 12:78–88. https://doi.org/10.1080/09733159.2016.1239359

    Article  Google Scholar 

  13. Mooraj S, Qi Z, Zhu C et al (2021) 3D printing of metal-based materials for renewable energy applications. Nano Res 14:2105–2132. https://doi.org/10.1007/s12274-020-3230-x

    Article  Google Scholar 

  14. Norfolk M, Johnson H (2015) Solid-State Additive Manufacturing for Heat Exchangers. Jom 67:655–659. https://doi.org/10.1007/s11837-015-1299-6

    Article  Google Scholar 

  15. Tuckerman DB, Pease RFW (1981) High-Performance Heat Sinking for VLSI. IEEE Electron Device Lett EDL-2:126–129. https://doi.org/10.1109/EDL.1981.25367

  16. Dominic A, Devahdhanush VS, Suresh S (2022) An experimental investigation on the effect of relative waviness on performance of minichannel heat sinks using water and nanofluids. Heat Mass Transf und Stoffuebertragung 58:247–262. https://doi.org/10.1007/s00231-021-03096-9

    Article  Google Scholar 

  17. Ali E, Park J, Choi J et al (2022) Enhanced thermal performance of vortex generating liquid heat sink for the application of cooling high voltage direct current devices. Heat Mass Transf und Stoffuebertragung. https://doi.org/10.1007/s00231-021-03168-w

    Article  Google Scholar 

  18. Sun B, Wang H, Shi Z, Li J (2022) Pumping power and heating area dependence of thermal resistance for a large-scale microchannel heat sink under extremely high heat flux. Heat Mass Transf und Stoffuebertragung 58:195–208. https://doi.org/10.1007/s00231-021-03104-y

    Article  Google Scholar 

  19. Shen H, Xie G, Wang CC, Liu H (2022) Experimental and numerical examinations of thermofluids characteristics of double-layer microchannel heat sinks with deflectors. Int J Heat Mass Transf 182:121961. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121961

    Article  Google Scholar 

  20. Panse SS, Ekkad SV (2021) Forced convection cooling of additively manufactured single and double layer enhanced microchannels. Int J Heat Mass Transf 168:120881. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120881

    Article  Google Scholar 

  21. Du Plessis A, Yadroitsev I, Yadroitsava I, Le Roux SG (2018) X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications. 3D Print Addit Manuf 5:227–247. https://doi.org/10.1089/3dp.2018.0060

  22. Wei C, Zhang Z, Cheng D et al (2021) An overview of laser-based multiple metallic material additive manufacturing: From macro: From micro-scales. Int J Extrem Manuf. https://doi.org/10.1088/2631-7990/abce04

    Article  Google Scholar 

  23. Murr LE (2020) Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: An overview. J Mater Res Technol 9:1087–1103. https://doi.org/10.1016/j.jmrt.2019.12.015

    Article  Google Scholar 

  24. Geng K, Yang Y, Li S et al (2020) Enabling high-performance 3D printing of Al powder by decorating with high laser absorbing Co phase. Addit Manuf 32:101012. https://doi.org/10.1016/j.addma.2019.101012

    Article  Google Scholar 

  25. Seabra M, Azevedo J, Araújo A et al (2016) Selective laser melting (SLM) and topology optimization for lighter aerospace components. Procedia Struct Integr 1:289–296. https://doi.org/10.1016/j.prostr.2016.02.039

  26. Lee J, Mudawar I (2005) Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I-pressure drop characteristics. Int J Heat Mass Transf 48:928–940. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.018

  27. Hupert ML, Witek MA, Wang Y et al (2003) Polymer-based microfluidic devices for biomedical applications. In: Becker H, Woias P (eds) Microfluidics, BioMEMS, and Medical Microsystems. SPIE, p 52

  28. Knight RW, Hall DJ, Goodling JS, A, Jaeger RC, (1992) Heat sink optimization with application to microchannels. IEEE Trans Components, Hybrids, Manuf Technol 15:832–842

    Article  Google Scholar 

  29. Tullius JF, Vajtai R, Bayazitoglu Y (2011) A review of cooling in microchannels. Heat Transf Eng 32:527–541

    Article  Google Scholar 

  30. Xia G, Ma D, Zhai Y et al (2015) Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure. Energy Convers Manag 105:848–857. https://doi.org/10.1016/j.enconman.2015.08.042

    Article  Google Scholar 

  31. Ma DD, Xia GD, Wang W et al (2019) Study on thermal performance of microchannel heat sinks with periodic jetting and throttling structures in sidewalls. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2019.113764

    Article  Google Scholar 

  32. Saleem S, Heidarshenas B (2021) An investigation on exergy in a wavy wall microchannel heat sink by using various nanoparticles in fluid flow: two-phase numerical study. J Therm Anal Calorim 145:1599–1610. https://doi.org/10.1007/s10973-021-10771-w

    Article  Google Scholar 

  33. Derikvand M, Rahmati AR (2021) Numerical investigation of power-law hybrid nanofluid in a wavy micro-tube with the hydrophobic wall and porous disks under a magnetic field. Int Commun Heat Mass Transf 129:105633. https://doi.org/10.1016/j.icheatmasstransfer.2021.105633

    Article  Google Scholar 

  34. Ali AM, Rona A, Kadhim HT et al (2021) Thermo-hydraulic performance of a circular microchannel heat sink using swirl flow and nanofluid. Appl Therm Eng 191:116817. https://doi.org/10.1016/j.applthermaleng.2021.116817

    Article  Google Scholar 

  35. Hatami M, Ganji DD (2014) Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method. Energy Convers Manag 78:347–358. https://doi.org/10.1016/j.enconman.2013.10.063

    Article  Google Scholar 

  36. Bajura RA, Jones EH (1976) Flow distribution manifolds. J Fluids Eng Trans ASME 98:654–665. https://doi.org/10.1115/1.3448441

    Article  Google Scholar 

  37. Vafai K, Zhu L (1999) Analysis of two layered microchannel heat sink concept in electronic cooling. Int J Heat Mass Transf 42:2287–2297

    Article  Google Scholar 

  38. Leng C, Wang XD, Wang TH, Yan WM (2015) Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink. Int J Heat Mass Transf 84:359–369. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.040

    Article  Google Scholar 

  39. Wang SL, Li XY, Wang XD, Lu G (2018) Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins. Int Commun Heat Mass Transf 93:41–47. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.003

    Article  Google Scholar 

  40. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. Am Soc Mech Eng Fluids Eng Div FED 231:99–105

    Google Scholar 

  41. Alagumalai A, Qin C, K E K V, et al (2022) Conceptual analysis framework development to understand barriers of nanofluid commercialization. Nano Energy 92:106736. https://doi.org/10.1016/j.nanoen.2021.106736

    Article  Google Scholar 

  42. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029

    Article  MATH  Google Scholar 

  43. Narendran G, Bhat MM, Akshay L, Arumuga Perumal D (2018) Experimental analysis on exergy studies of flow through a minichannel using Tio2/Water nanofluids. Therm Sci Eng Prog 8:93–104. https://doi.org/10.1016/j.tsep.2018.08.007

    Article  Google Scholar 

  44. Sadripour S, Chamkha AJ (2019) The effect of nanoparticle morphology on heat transfer and entropy generation of supported nanofluids in a heat sink solar collector. Therm Sci Eng Prog 9:266–280. https://doi.org/10.1016/j.tsep.2018.12.002

    Article  Google Scholar 

  45. Bhattacharya P, Samanta AN, Chakraborty S (2009) Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat Mass Transf und Stoffuebertragung 45:1323–1333. https://doi.org/10.1007/s00231-009-0510-0

    Article  Google Scholar 

  46. Azimi M, Mozaffari A (2015) Heat transfer analysis of unsteady graphene oxide nanofluid flow using a fuzzy identifier evolved by genetically encoded mutable smart bee algorithm. Eng Sci Technol Int J 18:106–123. https://doi.org/10.1016/j.jestch.2014.10.002

    Article  Google Scholar 

  47. Yu W, Xie H, Bao D (2010) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. https://doi.org/10.1088/0957-4484/21/5/055705

    Article  Google Scholar 

  48. Mohd Zubir MN, Badarudin A, Kazi SN et al (2015) Highly dispersed reduced graphene oxide and its hybrid complexes as effective additives for improving thermophysical property of heat transfer fluid. Int J Heat Mass Transf 87:284–294. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.017

    Article  Google Scholar 

  49. Bagheri Motlagh M, Kalteh M (2020) Molecular dynamics simulation of nanofluid convective heat transfer in a nanochannel: Effect of nanoparticles shape, aggregation and wall roughness. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.114028

    Article  Google Scholar 

  50. Toghraie D, Abdollah MMD, Pourfattah F et al (2018) Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim 131:1757–1766. https://doi.org/10.1007/s10973-017-6624-6

    Article  Google Scholar 

  51. Bahiraei M, Monavari A, Naseri M, Moayedi H (2020) Irreversibility characteristics of a modified microchannel heat sink operated with nanofluid considering different shapes of nanoparticles. Int J Heat Mass Transf 151:119359. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119359

    Article  Google Scholar 

  52. Sohel MR, Saidur R, Hassan NH et al (2013) Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink. Int Commun Heat Mass Transf 46:85–91. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.011

    Article  Google Scholar 

  53. Narendran G, Ramachandran K, Kumar N (2016) An inline sensing of coolant temperature inside a micro-channel for applications in ultra dense packed high power electronics. Optik (Stuttg) 127:871–875. https://doi.org/10.1016/j.ijleo.2015.10.183

    Article  Google Scholar 

  54. Narendran G, Gnanasekaran N, Arumuga Perumal D (2020) Experimental Investigation on Heat Spreader Integrated Microchannel Using Graphene Oxide Nanofluid. Heat Transf Eng 41:1252–1274. https://doi.org/10.1080/01457632.2019.1637136

    Article  Google Scholar 

  55. Denkenberger DC, Brandemuehl MJ, Pearce JM, Zhai J (2012) Expanded microchannel heat exchanger: Design, fabrication, and preliminary experimental test. Proc Inst Mech Eng Part A J Power Energy 226:532–544. https://doi.org/10.1177/0957650912442781

    Article  Google Scholar 

  56. Prasad KS, Panda SK, Kar SK et al (2017) Microstructures, forming limit and failure analyses of inconel 718 sheets for fabrication of aerospace components. J Mater Eng Perform 26:1513–1530

    Article  Google Scholar 

  57. Balichakra M, Bontha S, Krishna P, Balla VK (2019) Prediction and validation of residual stresses generated during laser metal deposition of γ titanium aluminide thin wall structures. Mater Res Express 6:106550. https://doi.org/10.1088/2053-1591/ab38ee

    Article  Google Scholar 

  58. Blakey-Milner B, Gradl P, Snedden G et al (2021) Metal additive manufacturing in aerospace: A review. Mater Des 209:110008. https://doi.org/10.1016/j.matdes.2021.110008

    Article  Google Scholar 

  59. Ni J, Ling H, Zhang S et al (2019) Three-dimensional printing of metals for biomedical applications. Mater Today Bio. https://doi.org/10.1016/j.mtbio.2019.100024

    Article  Google Scholar 

  60. Wycisk E, Siddique S, Herzog D et al (2015) Fatigue performance of laser additive manufactured Ti–6Al–4V in very high cycle fatigue regime up to 109 cycles. Front Mater 2:72

    Article  Google Scholar 

  61. Arie MA, Shooshtari AH, Ohadi MM (2018) Experimental characterization of an additively manufactured heat exchanger for dry cooling of power plants. Appl Therm Eng 129:187–198

    Article  Google Scholar 

  62. Ventola L, Robotti F, Dialameh M et al (2014) Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int J Heat Mass Transf 75:58–74

    Article  Google Scholar 

  63. Zhou J, Luo X, Pan Y et al (2019) Flow boiling heat transfer coefficient and pressure drop in minichannels with artificial activation cavities by direct metal laser sintering. Appl Therm Eng 160:113837

    Article  Google Scholar 

  64. Wong M, Owen I, Sutcliffe CJ, Puri A (2009) Convective heat transfer and pressure losses across novel heat sinks fabricated by Selective Laser Melting. Int J Heat Mass Transf 52:281–288

    Article  Google Scholar 

  65. Bichnevicius M, Saltzman D, Lynch S (2020) Comparison of Additively Manufactured Louvered Plate-Fin Heat Exchangers. J Therm Sci Eng Appl 12

  66. Collins IL, Weibel JA, Pan L, Garimella SV (2019) A permeable-membrane microchannel heat sink made by additive manufacturing. Int J Heat Mass Transf 131:1174–1183

    Article  Google Scholar 

  67. Yameen WC, Piascik NA, Clemente RC et al (2019) Experimental characterization of a manifold-microchannel heat exchanger fabricated based on additive Manufacturing. In: 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). pp 621–625

  68. Arie MA, Shooshtari AH, Dessiatoun S V, Ohadi MM (2017) Performance Characterization of an Additively Manufactured Titanium (Ti64) Heat Exchanger for an Air-water Cooling Application. In: Proceedings of the ASME 2016 Heat Transfer Summer Conference HT2016. pp 1–13

  69. Tsopanos S, Sutcliffe CJ, Owen I (2005) The manufacture of micro cross-flow heat exchangers by selective laser melting. Proc 5th Int Conf Enhanc Compact Ultra-Compact Heat Exch Sci Eng Technol 410–417

  70. Huang CA, Wang TH, Han WC, Lee CH (2007) A study of the galvanic corrosion behavior of Inconel 718 after electron beam welding. Mater Chem Phys 104:293–300

    Article  Google Scholar 

  71. Marchese G, Bassini E, Calandri M et al (2016) Microstructural investigation of as-fabricated and heat-treated Inconel 625 and Inconel 718 fabricated by direct metal laser sintering: Contribution of Politecnico di Torino and Istituto Italiano di Tecnologia (IIT) di Torino. Met Powder Rep 71:273–278

    Article  Google Scholar 

  72. Raj BA, Jappes JTW, Khan MA et al (2019) Studies on heat treatment and electrochemical behaviour of 3D printed DMLS processed nickel-based superalloy. Appl Phys A 125:722

    Article  Google Scholar 

  73. Keramati H, Battaglia F, Arie MA et al (2019) Additive manufacturing of compact manifold-microchannel heat exchangers utilizing direct metal laser sintering. In: 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). pp 423–429

  74. Zhang X, Tiwari R, Shooshtari AH, Ohadi MM (2018) An additively manufactured metallic manifold-microchannel heat exchanger for high temperature applications. Appl Therm Eng 143:899–908

    Article  Google Scholar 

  75. Gerstler WD, Erno D (2017) Introduction of an additively manufactured multi-furcating heat exchanger. In: 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). pp 624–633

  76. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: A review. Microfluid Nanofluidics 17:1–52. https://doi.org/10.1007/s10404-013-1291-9

    Article  Google Scholar 

  77. Alam A, Kim KY (2012) Analysis of mixing in a curved microchannel with rectangular grooves. Chem Eng J 181–182:708–716. https://doi.org/10.1016/j.cej.2011.12.076

    Article  Google Scholar 

  78. Jiang F, Drese KS, Hardt S et al (2004) Helical flows and chaotic mixing in curved micro channels. AIChE J 50:2297–2305. https://doi.org/10.1002/aic.10188

    Article  Google Scholar 

  79. Pi G, Deng D, Chen L et al (2020) Pool boiling performance of 3D-printed reentrant microchannels structures. Int J Heat Mass Transf 156:119920. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119920

    Article  Google Scholar 

  80. Liu H, Wang J, Gu Z et al (2022) Enhancement of pool boiling heat transfer using 3D-printed groove structure. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122155

    Article  Google Scholar 

  81. Kiyak M, Çakir O (2007) Examination of machining parameters on surface roughness in EDM of tool steel. J Mater Process Technol 191:141–144. https://doi.org/10.1016/j.jmatprotec.2007.03.008

    Article  Google Scholar 

  82. Ishfaq K, Naveed R, Asad M, Mudassar M (2022) Analyzing laminated electrode (s) performance for the EDM of microchannel (s) in Al (6061). Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10360-7

    Article  Google Scholar 

  83. Mandev E, Manay E (2022) Effects of surface roughness in multiple microchannels on mixed convective heat transfer. Appl Therm Eng 217:119102. https://doi.org/10.1016/j.applthermaleng.2022.119102

    Article  Google Scholar 

  84. Srivatsan TS, Sudarshan TS (Eds.) (2015) Additive Manufacturing: Innovations, Advances, and Applications (1st ed.). CRC Press. https://doi.org/10.1201/b19360

  85. Kemerling B, Lippold JC, Fancher CM et al (2018) Residual stress evaluation of components produced via direct metal laser sintering. Weld World 62:663–674. https://doi.org/10.1007/s40194-018-0572-z

  86. Kouraytem N, Varga J, Amin-Ahmadi B, Mirmohammad H, Chanut RA, Spear AD, Kingstedt OT (2021) A recrystallization heat-treatment to reduce deformation anisotropy of additively manufactured Inconel 718. Mater Des 198:109228 https://doi.org/10.1016/j.matdes.2020.109228

  87. Chandramohan P, Bhero S, Varachia F, Obadele BA, Olubambi PA (2018) Laser additive manufactured Ti–6Al–4V alloy: heat treatment studies. Trans Indian Inst Met 71:579–587. https://doi.org/10.1007/s12666-017-1190-y

    Article  Google Scholar 

  88. Narendran G, Gnanasekaran N, Perumal DA (2020) Thermodynamic irreversibility and conjugate effects of integrated microchannel cooling device using TiO2 nanofluid. Heat Mass Transf 56:489–505. https://doi.org/10.1007/s00231-019-02704-z

    Article  Google Scholar 

  89. Steele HWCWG (2010) Experimentation and uncertainty analysis for engineers

  90. Hummers WS, Offeman R, E. (1957) Preparation of Graphitic Oxide. J Am Chem Soc 208:1937

    Google Scholar 

  91. Baby TT, Ramaprabhu S (2011) Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res Lett 6:1–9. https://doi.org/10.1186/1556-276X-6-289

    Article  Google Scholar 

  92. Wang J, Zhu J, Zhang X, Chen Y (2013) Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Therm Fluid Sci 44:716–721. https://doi.org/10.1016/j.expthermflusci.2012.09.013

    Article  Google Scholar 

  93. Zhang H, Shao S, Xu H, Tian C (2013) Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel - Experimental results and correlations. Appl Therm Eng 61:86–92. https://doi.org/10.1016/j.applthermaleng.2013.07.026

    Article  Google Scholar 

  94. Hung TC, Yan WM, Li WP (2012) Analysis of heat transfer characteristics of double-layered microchannel heat sink. Int J Heat Mass Transf 55:3090–3099. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.038

    Article  Google Scholar 

  95. Monkova K, Zetkova I, Kučerová L et al (2019) Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch Appl Mech 89:791–804. https://doi.org/10.1007/s00419-018-1389-3

    Article  Google Scholar 

  96. Chatterjee R, Duryodhan VS, Agrawal A (2022) Impact of aspect ratio and thermophysical properties on heat transfer behavior in spiral microchannel. Int J Therm Sci 172:107335. https://doi.org/10.1016/j.ijthermalsci.2021.107335

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to acknowledge the support provided by Center for System Design (CSD) in National Institute of Technology Karnataka, Surathkal (NITK) for supporting our experimental work with sensing and data acquisition systems.

Funding

This research work has not been funded by any institute or an agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Narendran.

Ethics declarations

Conflict of Interest

For the journal of Heat and Mass Transfer, on behalf of all authors, the corresponding author declare that he does not have any commercial or associative interest that reflect conflict of interest in conjunction with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendran, G., Mallikarjuna, B., Nagesha, B.K. et al. Experimental investigation on additive manufactured single and curved double layered microchannel heat sink with nanofluids. Heat Mass Transfer 59, 1311–1332 (2023). https://doi.org/10.1007/s00231-022-03336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03336-6

Navigation