Skip to main content
Log in

Subsurface thermal sensitivity evaluation of magnetic nanoparticles for theranostics using infrared thermography

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Superparamagnetic ferrites are potential materials explored for magnetic nanoparticle hyperthermia. Theranostics utilizing infrared thermography with iron oxide nanoparticles demand better heating characteristics and thermal sensitivity that are affected by the biological fluid and absorption by the tissue layer. Agar gel phantoms were incorporated with the ferrite particles dispersed in albumin and water, where the analyses present improved sensitivity with Mn-doped Fe3O4 compared to magnetite. Mn-doping shows attenuation in temperature difference from 6.7K to about 2K with layer thickness up to 2mm. The Lambert absorption coefficient determined for the phantom layers from the subsurface sensing is 0.07cm− 1 with the Mn-doped particles both in water and albumin. A prudent investigation of the absorbance characteristics of phantom layers suggests hyperthermia with long-wave infrared thermography (8–13μm) as a promising combination for the theranostics of subcutaneous tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anandhi JS, Jacob GA, Joseyphus RJ (2019) Heating characteristics of dextran modified magnetite nanoparticles by infrared thermography. Mater Res Express 6:015045. https://doi.org/10.1088/2053-1591/aae87d

    Article  Google Scholar 

  2. Anandhi JS, Jacob GA, Joseyphus RJ (2020) Factors affecting the heating efficiency of Mn-doped Fe3O4 nanoparticles. J Magn Magn Mater 512:166992. https://doi.org/10.1016/j.jmmm.2020.166992

    Article  Google Scholar 

  3. Lima E, Torres TE, Rossi LM et al (2013) Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J Nanopart Res 15:1654. https://doi.org/10.1007/s11051-013-1654-x

    Article  Google Scholar 

  4. Mazario E, Forget A, Belkahla H et al (2017) Functionalization of Iron Oxide Nanoparticles With HSA Protein for Thermal Therapy. IEEE Trans Magn 53:1–5. https://doi.org/10.1109/TMAG.2017.2707599

    Article  Google Scholar 

  5. Dutz S, Hergt R (2014) Magnetic particle hyperthermia - A promising tumour therapy? Nanotechnology 25:452001. https://doi.org/10.1088/0957-4484/25/45/452001

    Article  Google Scholar 

  6. Dutta J, Kundu B (2018) Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition. Heat and Mass Transfer/Waerme- und Stoffuebertragung 54:3199–3217. https://doi.org/10.1007/s00231-018-2360-0

    Article  Google Scholar 

  7. Darvishi V, Navidbakhsh M, Amanpour S (2021) Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat and Mass Transfer/Waerme- und Stoffuebertragung 1029–1039. https://doi.org/10.1007/s00231-021-03161-3

  8. Jeon M, Halbert MV, Stephen ZR, Zhang M (2021) Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv Mater 33:1–18. https://doi.org/10.1002/adma.201906539

    Article  Google Scholar 

  9. Hosono T, Takahashi H, Fujita A et al (2009) Synthesis of magnetite nanoparticles for AC magnetic heating. J Magn Magn Mater 321:3019–3023. https://doi.org/10.1016/j.jmmm.2009.04.061

    Article  Google Scholar 

  10. Ghosh S, Gupta D, das, Chakraborty S, Das SK (2013) Superparamagnetic nanoparticle assisted hyperthermia and cooling protocol for optimum damage of internal carcinoma using computational predictive model. Heat and Mass Transfer/Waerme- und Stoffuebertragung 49:1217–1229. https://doi.org/10.1007/s00231-013-1162-7

    Article  Google Scholar 

  11. Guardia P, di Corato R, Lartigue L et al (2012) Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano 6:3080–3091. https://doi.org/10.1021/nn2048137

    Article  Google Scholar 

  12. Skumiel A, Hornowski T, Józefczak A et al (2016) Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids. Appl Therm Eng 100:1308–1318. https://doi.org/10.1016/j.applthermaleng.2016.02.063

    Article  Google Scholar 

  13. Hayashi K, Sato Y, Sakamoto W, Yogo T (2017) Theranostic nanoparticles for MRI-guided thermochemotherapy: “tight” clustering of magnetic nanoparticles boosts relaxivity and heat-generation power. ACS Biomaterials Science and Engineering 3:95–105. https://doi.org/10.1021/acsbiomaterials.6b00536

    Article  Google Scholar 

  14. Lahiri BB, Ranoo S, Philip J (2017) Magnetic hyperthermia study in water based magnetic fluids containing TMAOH coated Fe3O4 using infrared thermography. Infrared Phys Technol 80:71–82. https://doi.org/10.1016/j.infrared.2016.11.015

    Article  Google Scholar 

  15. Monnier CA, Crippa F, Geers C et al (2017) Lock-In Thermography as an Analytical Tool for Magnetic Nanoparticles: Measuring Heating Power and Magnetic Fields. J Phys Chem C 121:27164–27175. https://doi.org/10.1021/acs.jpcc.7b09094

    Article  Google Scholar 

  16. Rodrigues HF, Mello FM, Branquinho LC et al (2013) Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Int J Hyperth 29:752–767. https://doi.org/10.3109/02656736.2013.839056

    Article  Google Scholar 

  17. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374. https://doi.org/10.1016/S0304-8853(02)00706-0

    Article  Google Scholar 

  18. Anandhi JS, Arun T, Joseyphus RJ (2020) Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles. Physica B 598:412429. https://doi.org/10.1016/j.physb.2020.412429

    Article  Google Scholar 

  19. Anandhi JS, Joseyphus RJ (2021) Insights on the Heating Characteristics of Mn and Co Ferrites. Int J Thermophys 42:1–11. https://doi.org/10.1007/s10765-020-02782-w

    Article  Google Scholar 

  20. Levy A, Dayan A, Ben-David M, Gannot I (2010) A new thermography-based approach to early detection of cancer utilizing magnetic nanoparticles theory simulation and in vitro validation. Nanomedicine: Nanatechnol Biology Med 6:786–796. https://doi.org/10.1016/j.nano.2010.06.007

    Article  Google Scholar 

  21. Sarkar S, Zimmermann K, Leng W et al (2011) Measurement of the thermal conductivity of carbon nanotube-tissue phantom composites with the hot wire probe method. Ann Biomed Eng 39:1745–1758. https://doi.org/10.1007/s10439-011-0268-7

    Article  Google Scholar 

  22. Périgo EA, Hemery G, Sandre O et al (2015) Fundamentals and advances in magnetic hyperthermia. Appl Phys Reviews 2:041302. https://doi.org/10.1063/1.4935688

    Article  Google Scholar 

  23. Józefczak A, Kaczmarek K, Kubovčíková M et al (2017) The effect of magnetic nanoparticles on the acoustic properties of tissue-mimicking agar-gel phantoms. J Magn Magn Mater 431:172–175. https://doi.org/10.1016/j.jmmm.2016.09.118

    Article  Google Scholar 

  24. Vollmer M, Möllmann K-P (2010) Infrared thermal imaging: fundamentals, research and applications. Wiley-vch, Germany. http://onlinelibrary.wiley.com/book/10.1002/9783527630868

    Book  Google Scholar 

  25. Meola C, Boccardi S, Carlomagno G (2017) Infrared Thermography Basics. Infrared Thermography in the Evaluation of Aerospace Composite Materials. 57–83. https://doi.org/10.1016/b978-1-78242-171-9.00003-6

  26. Lahiri BB, Ranoo S, Philip J (2017) Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids. J Phys D 50:455005. https://doi.org/10.1088/1361-6463/aa89de

    Article  Google Scholar 

  27. Upadhyay RV, Davies KJ, Wells S, Charles SW (1994) Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1–xFe2O4 spinel systems: I. particles. J Magn Magn Mater 132:249–257. https://doi.org/10.1016/0304-8853(94)90320-4

    Article  Google Scholar 

  28. Doaga A, Cojocariu AM, Amin W et al (2013) Synthesis and characterizations of manganese ferrites for hyperthermia applications. Mater Chem Phys 143:305–310. https://doi.org/10.1016/j.matchemphys.2013.08.066

    Article  Google Scholar 

  29. Cullity BD, Graham CD (2009) Introduction to Magnetic Materials. John Wiley & Sons, Inc

  30. Otero-Lorenzo R, Fantechi E, Sangregorio C, Salgueiriño V (2016) Solvothermally Driven Mn Doping and Clustering of Iron Oxide Nanoparticles for Heat Delivery Applications. Chem---Eur J 22:6666–6675. https://doi.org/10.1002/chem.201505049

    Article  Google Scholar 

  31. Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372. https://doi.org/10.1016/S0304-8853(99)00347-9

    Article  Google Scholar 

  32. Palencia M (2018) Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions. J Adv Res 14:53–62. https://doi.org/10.1016/J.JARE.2018.05.009

    Article  Google Scholar 

  33. Coker D, Reimers J, Watts R (1982) The Infrared Absorption Spectrum of Water. Aust J Phys 35:623. https://doi.org/10.1071/PH820623

    Article  Google Scholar 

  34. Lepodise LM, Horvat J, Lewis RA (2013) Collective librations of water molecules in the crystal lattice of rubidium bromide: experiment and simulation. Phys Chem Chem Phys 15:20252–20261. https://doi.org/10.1039/C3CP53667J

    Article  Google Scholar 

  35. Tong Y, Kampfrath T, Campen RK (2016) Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid. Phys Chem Chem Phys 18:18424–18430. https://doi.org/10.1039/C6CP01004K

    Article  Google Scholar 

  36. Marques PAAP, Cachinho SCP, Magalhães MCF et al (2004) Mineralisation of bioceramics in simulated plasma with physiological CO2/HCO3 buffer and albumin. J Mater Chem 14:1861–1866. https://doi.org/10.1039/B403495C

    Article  Google Scholar 

  37. Bonnier F, Baker MJ, Byrne HJ (2014) Vibrational spectroscopic analysis of body fluids: Avoiding molecular contamination using centrifugal filtration. Anal Methods 6:5155–5160. https://doi.org/10.1039/c4ay00891j

    Article  Google Scholar 

  38. Matsuhiro B (1996) Vibrational spectroscopy of seaweed galactans. Hydrobiologia 1996 326:1 326:481–489. https://doi.org/10.1007/BF00047849

  39. Pennes HH (1948) Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J Appl Physiol 1:93–122. https://doi.org/10.1152/JAPPL.1948.1.2.93

    Article  Google Scholar 

  40. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: A review. Infrared Phys Technol 55:221–235. https://doi.org/10.1016/j.infrared.2012.03.007

    Article  Google Scholar 

  41. Jeyadevan B (2010) Present status and prospects of magnetite nanoparticles-based hyperthermia. J Ceram Soc Jpn 118:391–401. https://doi.org/10.2109/jcersj2.118.391

    Article  Google Scholar 

  42. Francis F, Anandhi JS, Jacob GA et al (2021) Temperature Sensitivity of Magnetic Nanoparticle Hyperthermia Using IR Thermography. Int J Nanosci 20:2150002. https://doi.org/10.1142/S0219581X21500022

    Article  Google Scholar 

  43. Lima E, de Biasi E, Zysler RD et al (2014) Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia. J Nanopart Res 16:1–11. https://doi.org/10.1007/s11051-014-2791-6

    Article  Google Scholar 

  44. Sadat ME, Patel R, Sookoor J et al (2014) Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater Sci Eng C 42:52–63. https://doi.org/10.1016/j.msec.2014.04.064

    Article  Google Scholar 

  45. Carlomagno GM, Cardone G (2010) Infrared thermography for convective heat transfer measurements. Exp Fluids 49:1187–1218. https://doi.org/10.1007/s00348-010-0912-2

    Article  Google Scholar 

  46. Wexler AS (1967) Integrated Intensities of Absorption Bands in Infrared Spectroscopy. Appl Spectrosc Rev 1:29–98. https://doi.org/10.1080/05704926708547581

    Article  Google Scholar 

  47. Narayanan J, Xiong JY, Liu XY (2006) Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques. Journal of Physics: Conference Series 28:83–86. https://doi.org/10.1088/1742-6596/28/1/017

  48. Rossi F, Perale G, Masi M (2010) Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chem Pap 64:573–578. https://doi.org/10.2478/s11696-010-0052-4

    Article  Google Scholar 

  49. Weinberger LA, Kagarise RE (1954) Infrared Spectra of Plastics and Resins, vol PB111438. IRUG database / U. S. Department of Commerce

  50. Welch AJ (1984) The Thermal Response of Laser Irradiated Tissue. IEE J Quantum Electron 20:1471–1481. https://doi.org/10.1109/JQE.1984.1072339

    Article  Google Scholar 

  51. Cubeddu R, Pifferi A, Taroni P et al (2014) In vivo Absorption and Scattering Spectra of Human Tissues in the Red and Near Infrared. Adv Opt Imaging Photon Migration 21:AWC5. https://doi.org/10.1364/aoipm.1998.awc5

    Article  Google Scholar 

  52. Aranda-Lara L, Torres-García E, Oros-Pantoja R (2014) Biological Tissue Modeling with Agar Gel Phantom for Radiation Dosimetry of 99mTc. Open J Radiol 04:44–52. https://doi.org/10.4236/ojrad.2014.41006

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology, Government of India for the experimental facilities and the Science and Engineering Research Board (SERB) project (CRG/2018/000939).

Author information

Authors and Affiliations

Authors

Contributions

J. Shebha Anandhi: Data curation, Formal analysis; Investigation, Methodology, Resources, Software, Validation, Visualization, Roles/Writing - original draft, Writing - review & editing. R. Justin Joseyphus: Conceptualization, Supervision, Writing - review & editing.

Corresponding author

Correspondence to R. Justin Joseyphus.

Ethics declarations

Statements and declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandhi, J.S., Joseyphus, R.J. Subsurface thermal sensitivity evaluation of magnetic nanoparticles for theranostics using infrared thermography. Heat Mass Transfer 59, 803–816 (2023). https://doi.org/10.1007/s00231-022-03293-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03293-0

Keywords

Navigation