Skip to main content

Thermal Response of Iron Oxide and Metal-Based Iron Oxide Nanoparticles for Magnetic Hyperthermia

  • Chapter
  • First Online:
Magnetic Nanoheterostructures

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Magnetic nanoparticles have been extensively in the biomedical field as drug delivery agent, diagnosis of different diseases and more recently in the treatment of different types of cancer. Majority of these studies reported the use of iron oxide nanoparticles or formulation contains at least iron in most of magnetic-based nanosystems. Focus on iron oxide nanoparticles is mainly due to their superparamagnetic nature at nanoscale and other features such as higher surface to volume ratio, biocompatibility and low toxicity. For further improvement in their properties, doping with different transition metal elements is also under investigations. This chapter covers most commonly used types of iron oxide NPs, behavior with few doping metals in iron oxide nanoparticles and their synthesis protocols through different physical and chemical methods. Finally, heat generation mechanisms responsible for localized heat in tissues have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Much R, Gedanken A (2008) Sonochemical synthesis under a magnetic field: structuring magnetite nanoparticles and the destabilization of a colloidal magnetic aqueous solution under a magnetic field. J Phys Chem C 112(1):35–42

    Article  CAS  Google Scholar 

  • Adeleye AS et al (2018) Influence of nanoparticle doping on the colloidal stability and toxicity of copper oxide nanoparticles in synthetic and natural waters. Water Res 132:12–22

    Article  CAS  Google Scholar 

  • Aghazadeh M, Maragheh MG, Norouzi P (2018) Enhancing the supercapacitive properties of iron oxide electrode through Cu2+-doping: cathodic electrosynthesis and characterization. Int J Electrochem Sci 13(2):1355–1366

    Article  CAS  Google Scholar 

  • Ai Z et al (2010) Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J Phys Chem C 114(14):6237–6242

    Article  CAS  Google Scholar 

  • Ali A et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49

    Article  CAS  Google Scholar 

  • Amara D, Grinblat J, Margel S (2012) Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J Mater Chem 22(5):2188–2195

    Article  CAS  Google Scholar 

  • Andrä W, Nowak H (2007) Magnetism in medicine: a handbook. Wiley

    Google Scholar 

  • Anjum S et al (2017) Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles. J Magn Magn Mater 432:198–207

    Article  CAS  Google Scholar 

  • Anthony JW et al (1990) Handbook of mineralogy, vol 1. Mineral Data Publ. Tucson

    Google Scholar 

  • Anthony J et al (2017) Handbook of mineralogy. Chantilly (VA), mineralogical society of America

    Google Scholar 

  • Arachchige MP et al (2017) Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells. Micron 92:25–31

    Article  CAS  Google Scholar 

  • Ba-Abbad MM et al (2017) Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity. J Sol-Gel Sci Technol 81(3):880–893

    Article  CAS  Google Scholar 

  • Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059

    Article  CAS  Google Scholar 

  • Basti H et al (2014) Size tuned polyol-made Zn0. 9M0. 1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles as potential heating agents for magnetic hyperthermia: from synthesis control to toxicity survey. Mater Res Exp 1(4):045047

    Google Scholar 

  • Batsaikhan E et al (2015) Development of ferromagnetic superspins in bare Cu nanoparticles by electronic charge redistribution. Int J Mol Sci 16(10):23165–23176

    Article  CAS  Google Scholar 

  • Boxall C, Kelsall G, Zhang Z (1996) Photoelectrophoresis of colloidal iron oxides. Part 2.—magnetite (Fe3O4). J Chem Soc Faraday Trans 92(5):791–802

    Google Scholar 

  • Brown WF (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130(5):1677–1686

    Article  Google Scholar 

  • Burrows F et al (2010) Energy losses in interacting fine-particle magnetic composites. J Phys D Appl Phys 43(47):474010

    Article  CAS  Google Scholar 

  • Cai L et al (2014) The effect of doping transition metal oxides on copper manganese oxides for the catalytic oxidation of CO. Chin J Catal 35(2):159–167

    Article  CAS  Google Scholar 

  • Cao F et al (2007) Synthesis of carbon–Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. Carbon 45(4):727–731

    Article  CAS  Google Scholar 

  • Cao M et al (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27(1):47–56

    Article  CAS  Google Scholar 

  • Casula MF et al (2016) Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Phys Chem Chem Phys 18(25):16848–16855

    Article  CAS  Google Scholar 

  • Céspedes E et al (2014) Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications. Nanoscale 6(21):12958–12970

    Article  CAS  Google Scholar 

  • Chakrabarti S, Mandal S, Chaudhuri S (2005) Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties. Nanotechnology 16(4):506

    Article  CAS  Google Scholar 

  • Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2(9):1003–1007

    Article  CAS  Google Scholar 

  • Chen M et al (2016) Inhibitory effect of magnetic Fe3O4 nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro. Int J Nanomed 11:4413

    Article  CAS  Google Scholar 

  • Confalonieri GB et al (2011) Template-assisted self-assembly of individual and clusters of magnetic nanoparticles. Nanotechnology 22(28):285608

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses

    Google Scholar 

  • Daoush W (2017) Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J Nanomed Res 5(1):e6

    Google Scholar 

  • de la Venta J et al (2007) Magnetism in polymers with embedded gold nanoparticles. Adv Mater 19(6):875–877

    Article  CAS  Google Scholar 

  • Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172

    Article  CAS  Google Scholar 

  • Deissler RJ, Wu Y, Martens MA (2014) Dependence of Brownian and Néel relaxation times on magnetic field strength. Med Phys 41(1):012301

    Article  Google Scholar 

  • Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperth 29(8):790–800

    Article  Google Scholar 

  • Espinosa A et al (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10(2):2436–2446

    Article  CAS  Google Scholar 

  • Feldheim D, Foss C (2002) Metal nanoparticles: synthesis, characterization, and applications. Dekker, New York

    Google Scholar 

  • Feng H et al (2018) Cu-Doped Fe@ Fe2O3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater. Environ Sci Nano 5(7):1595–1607

    Article  CAS  Google Scholar 

  • Fernández-Barahona I et al (2019) Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: one-pot synthesis and in vivo targeted molecular imaging. ACS Omega 4(2):2719–2727

    Article  CAS  Google Scholar 

  • Fortin J-P et al (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635

    Article  CAS  Google Scholar 

  • Garcia M et al (2007) Magnetic properties of ZnO nanoparticles. Nano Lett 7(6):1489–1494

    Article  CAS  Google Scholar 

  • Garitaonandia JS et al (2008) Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8(2):661–667

    Article  CAS  Google Scholar 

  • Ge S et al (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113(31):13593–13599

    Article  CAS  Google Scholar 

  • Gubin SP et al (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74(6):489

    Article  CAS  Google Scholar 

  • Gupta AK et al (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications

    Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  • Gupta J et al (2018) Superparamagnetic iron oxide-reduced graphene oxide nanohybrid-a vehicle for targeted drug delivery and hyperthermia treatment of cancer. J Magn Magn Mater 448:332–338

    Article  CAS  Google Scholar 

  • Hanini A et al (2016) Zinc substituted ferrite nanoparticles with Zn0. 9Fe2. 1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. J Magn Magn Mater 416:315–320

    Google Scholar 

  • Hanini A et al (2016) Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following γ-Fe2O3 NPs internalization and magnetic field application. RSC Adv 6(19):15415–15423

    Article  CAS  Google Scholar 

  • Haribabu V et al (2016) Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J Biomed Mater Res B Appl Biomater 104(4):817–824

    Article  CAS  Google Scholar 

  • Henam SD et al (2019) Microwave synthesis of nanoparticles and their antifungal activities. Spectrochim Acta Part A Mol Biomol Spectrosc 213:337–341

    Article  CAS  Google Scholar 

  • Hergt R et al (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18(38):S2919

    CAS  Google Scholar 

  • Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20(38):385214

    Google Scholar 

  • Hiergeist R et al (1999) Application of magnetite ferrofluids for hyperthermia. J Magn Magn Mater 201(1–3):420–422

    Article  CAS  Google Scholar 

  • Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7(9):1443–1459

    Article  CAS  Google Scholar 

  • Hu X et al (2007) α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 19(17):2324–2329

    Article  CAS  Google Scholar 

  • Hu M, Jiang J-S, Zeng Y (2010) Prussian blue microcrystals prepared by selective etching and their conversion to mesoporous magnetic iron (III) oxides. Chem Commun 46(7):1133–1135

    Article  CAS  Google Scholar 

  • Hu M et al (2012) Hierarchical magnetic iron (III) oxides prepared by solid-state thermal decomposition of coordination polymers. RSC Adv 2(11):4782–4786

    Article  CAS  Google Scholar 

  • Huang H et al (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13(2):172–175

    Article  CAS  Google Scholar 

  • Huang H et al (2019) Pulsed laser ablation of bulk target and particle products in liquid for nanomaterial fabrication. AIP Adv 9(1):015307

    Article  CAS  Google Scholar 

  • Ibrahim E et al (2018) Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater Res Bull 99:103–108

    Article  CAS  Google Scholar 

  • Iwamoto T, Ishigaki T (2013) Fabrication of iron oxide nanoparticles using laser ablation in liquids. J Phys Conf Ser

    Google Scholar 

  • Javed Y, Ali K, Jamil Y (2017) Magnetic nanoparticle-based hyperthermia for cancer treatment: factors affecting heat generation efficiency. In: Complex magnetic nanostructures. Springer, Berlin, pp 393–424

    Google Scholar 

  • Jiang F et al (2010) Synthesis of iron oxide nanocubes via microwave-assisted solvolthermal method. J Alloy Compd 503(2):L31–L33

    Article  CAS  Google Scholar 

  • Kandasamy G et al (2018a) Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq 256:224–237

    Article  CAS  Google Scholar 

  • Kandasamy G et al (2018b) Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega 3(4):3991–4005

    Article  CAS  Google Scholar 

  • Kang YS et al (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8(9):2209–2211

    Article  CAS  Google Scholar 

  • Karna SK et al (2011) Observations of large magnetic moments in icosahedral Pb nanoparticles. J Phys Chem C 115(18):8906–8910

    Article  CAS  Google Scholar 

  • Kuchma E, Kubrin S, Soldatov A (2018) The local atomic structure of colloidal superparamagnetic iron oxide nanoparticles for theranostics in oncology. Biomedicines 6(3):78

    Article  CAS  Google Scholar 

  • Lasemi N et al (2018) Laser-assisted synthesis of colloidal FeWxOy and Fe/FexOy nanoparticles in water and ethanol. ChemPhysChem 19(11):1414–1419

    Article  CAS  Google Scholar 

  • Laurent S et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Coll Interface Sci 166(1–2):8–23

    Article  CAS  Google Scholar 

  • Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589

    Article  CAS  Google Scholar 

  • Liang X et al (2006) Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Func Mater 16(14):1805–1813

    Article  CAS  Google Scholar 

  • Lim J, Majetich SA (2013) Composite magnetic–plasmonic nanoparticles for biomedicine: manipulation and imaging. Nano Today 8(1):98–113

    Article  CAS  Google Scholar 

  • Lin M, Huang J, Sha M (2014) Recent advances in nanosized Mn–Zn ferrite magnetic fluid hyperthermia for cancer treatment. J Nanosci Nanotechnol 14(1):792–802

    Article  CAS  Google Scholar 

  • Litrán R et al (2006) Magnetic and microstructural analysis of palladium nanoparticles with different capping systems. Phys Rev B 73(5):054404

    Article  CAS  Google Scholar 

  • Liu M-S et al (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49(17–18):3028–3033

    Article  CAS  Google Scholar 

  • Maity D et al (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321(9):1256–1259

    Article  CAS  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248

    Article  Google Scholar 

  • Mazario E et al (2017) Functionalization of iron oxide nanoparticles with HSA protein for thermal therapy. IEEE Trans Magn 53(11):1–5

    Article  Google Scholar 

  • Mohanraj K, Sivakumar G (2017) Synthesis of γ-Fe2O3, Fe3O4 and copper doped Fe3O4 nanoparticles by sonochemical method. Sains Malaysiana 46(10):1935–1942

    Article  CAS  Google Scholar 

  • Morel A-L et al (2008) Sonochemical approach to the synthesis of Fe3O4@ SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2(5):847–856

    Article  CAS  Google Scholar 

  • Mukh-Qasem RA, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci 284(2):489–494

    Article  CAS  Google Scholar 

  • Néel L (1950) Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh. J Phys Radium 11(2):49–61

    Article  Google Scholar 

  • Néel L, Kurti N (1988) Selected works of Louis Néel. Gordon and Breach Science Publ, New York

    Google Scholar 

  • Neuberger T et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496

    Article  CAS  Google Scholar 

  • Niemirowicz K et al (2012) Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci 57(2):196–207

    Article  CAS  Google Scholar 

  • Obaidat I, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1):63–89

    Article  CAS  Google Scholar 

  • O’Hara MJ et al (2016) Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions. RSC Adv 6(107):105239–105251

    Article  CAS  Google Scholar 

  • Pankhurst Q et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001

    Article  CAS  Google Scholar 

  • Park J et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891

    Article  CAS  Google Scholar 

  • Pascal C et al (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147

    Google Scholar 

  • Punitha S, Nehru L (2018) Direct synthesis of iron oxide (α-Fe2O3) nanoparticles by the combustion approach. Adv Sci Lett 24(8):5608–5610

    Article  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  Google Scholar 

  • Qiu G et al (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J Phys Chem C 115(40):19626–19631

    Article  CAS  Google Scholar 

  • Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49(2):137–152

    Article  CAS  Google Scholar 

  • Rajabi A et al (2019) Synthesis, characterization, and antibacterial activity of Ag2O-loaded polyethylene terephthalate fabric via ultrasonic method. Nanomaterials 9(3):450

    Article  CAS  Google Scholar 

  • Ramprasad R et al (2004) Magnetic properties of metallic ferromagnetic nanoparticle composites. J Appl Phys 96(1):519–529

    Article  CAS  Google Scholar 

  • Raveendran S, Kannan S (2019) Polymorphism and phase transitions in t-ZrO2/CoFe2O4 composite structures: impact of composition and heat treatments. Cryst Growth Des 19(8):4710–4720

    Article  CAS  Google Scholar 

  • Riviere C et al (2006) Nano-systems for medical applications: biological detection, drug delivery, diagnosis and therapy. Annales de Chimie 31(3):351–367

    Article  CAS  Google Scholar 

  • Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121(49):11595–11596

    Article  CAS  Google Scholar 

  • Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  CAS  Google Scholar 

  • Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci Rep 5:9733

    Article  CAS  Google Scholar 

  • Sequeira CA (2018) Electrochemical synthesis of iron oxide nanoparticles for biomedical application. Org Med Chem Int J 5(2):1–12

    Google Scholar 

  • Shatnawi M et al (2016) Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Res Phys 6:1064–1071

    Google Scholar 

  • Shen S et al (2015) Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39:67–74

    Article  CAS  Google Scholar 

  • Shreshtha P, Mohite S, Jadhav M (2015) Review on thermal seeds in magnetic hyperthermia therapy. IJITR 3(4):2283–2287

    Google Scholar 

  • Sibokoza S et al (2017) The effect of temperature and precursor concentration on the synthesis of cobalt sulphide nanoparticles using cobalt diethyldithiocarbamate complex. Chalcogenide Lett 14(2)

    Google Scholar 

  • Singh H et al (2018) Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. J Photochem Photobiol, B 185:100–110

    Article  CAS  Google Scholar 

  • Skoropata E et al (2014) Intra-and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage. Phys Rev B 90(17):174424

    Article  CAS  Google Scholar 

  • Sreeja V, Joy P (2007) Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater Res Bull 42(8):1570–1576

    Article  CAS  Google Scholar 

  • Thanh NT (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC press

    Google Scholar 

  • Theerdhala S et al (2010) Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrason Sonochem 17(4):730–737

    Article  CAS  Google Scholar 

  • Venkatesan K et al (2015) Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications. Int J Nanomed 10(Suppl 1):189

    CAS  Google Scholar 

  • Veverka M et al (2014) Magnetic heating by silica-coated Co–Zn ferrite particles. J Phys D Appl Phys 47(6):065503

    Article  CAS  Google Scholar 

  • Vitulli G et al (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14(3):1183–1186

    Article  CAS  Google Scholar 

  • Wahab A et al (2019) Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Appl Nanosci 1–10

    Google Scholar 

  • Wang M-H et al (2010) Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly. Mater Chem Phys 119(1–2):153–157

    Article  CAS  Google Scholar 

  • Wang Y et al (2012) One-pot reaction to synthesize superparamagnetic iron oxide nanoparticles by adding phenol as reducing agent and stabilizer. J Nanopart Res 14(4):755

    Article  CAS  Google Scholar 

  • Warner CL et al (2012) Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28(8):3931–3937

    Article  CAS  Google Scholar 

  • Wijaya A et al (2007) Magnetic field heating study of Fe-doped Au nanoparticles. J Magn Magn Mater 309(1):15–19

    Article  CAS  Google Scholar 

  • Wolf S et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294(5546):1488–1495

    Article  CAS  Google Scholar 

  • Wong RM et al (2012) Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 6(4):3461–3467

    Article  CAS  Google Scholar 

  • Wu W et al (2007) Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles. Nanotechnology 18(14):145609

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397

    Article  CAS  Google Scholar 

  • Wu W et al (2010) Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J Phys Chem C 114(39):16092–16103

    Article  CAS  Google Scholar 

  • Wu S et al (2011a) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884

    Article  CAS  Google Scholar 

  • Wu L et al (2011b) Unique lamellar sodium/potassium iron oxide nanosheets: facile microwave-assisted synthesis and magnetic and electrochemical properties. Chem Mater 23(17):3946–3952

    Article  CAS  Google Scholar 

  • Wu W et al (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  CAS  Google Scholar 

  • Yang L et al (2008) Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol 4(4):439–449

    Article  CAS  Google Scholar 

  • Zhang Z, Boxall C, Kelsall G (1993) Photoelectrophoresis of colloidal iron oxides 1. Hematite (α-Fe2O3). In: Colloids in the aquatic environment. Elsevier, pp 145–163

    Google Scholar 

  • Zhang X et al (2010) Role of Néel and Brownian relaxation mechanisms for water-based Fe3O4 nanoparticle ferrofluids in hyperthermia. Biomed Eng Appl Basis Commun 22(05):393–399

    Article  CAS  Google Scholar 

  • Zhang S et al (2012) Sonochemical formation of iron oxide nanoparticles in ionic liquids for magnetic liquid marble. Phys Chem Chem Phys 14(15):5132–5138

    Article  CAS  Google Scholar 

  • Zhang D et al (2018) Magnetic Fe@ FeOx, Fe@ C and α-Fe2O3 single-crystal nanoblends synthesized by femtosecond laser ablation of fe in acetone. Nanomaterials 8(8):631

    Article  CAS  Google Scholar 

  • Zhou Z et al (2014) Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35(26):7470–7478

    Article  CAS  Google Scholar 

  • Zhu S et al (2013) Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrason Sonochem 20(3):872–880

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Jamil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zubair Sultan, M., Jamil, Y., Javed, Y., Sharma, S.K., Shoaib Tahir, M. (2020). Thermal Response of Iron Oxide and Metal-Based Iron Oxide Nanoparticles for Magnetic Hyperthermia. In: Sharma, S., Javed, Y. (eds) Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-39923-8_11

Download citation

Publish with us

Policies and ethics