Skip to main content
Log in

A Study on Thermal Response of Nanoparticles in External Magnetic Field

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Hyperthermia has become an important area of research for cancer treatment throughout the world. Choosing appropriate magnetic nanoparticles for specific performance at the cancerous site of the body is a major problem. In this research work, iron oxide nanoparticles were synthesized using laser ablation and Ag@α‑Fe2O3 and γ-Fe2O3 nanoparticles using chemical methods. The size and shape of synthesized nanoparticles were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). These nanoparticles were then exposed to the alternating magnetic field in a fluid medium in a calorimeter. The heat generated by nanoparticles in the response to the applied magnetic field due through Néel relaxation and through Brown relaxation effects was measured using an array of the k-type thermometer. Their thermal responses in AC magnetic field to time regarding their types were studied. γ-Fe2O3 produced more heat, sufficient enough to kill the cancer cells selectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stephens, S.J., Chino, F., Williamson, H., Niedzwiecki, D., Chino, J., Mowery, Y.M.: Evaluating for disparities in place of death for head and neck cancer patients in the United States utilizing the CDC WONDER database. Oral Oncol. 102, 104555 (2020). https://doi.org/10.1016/j.oraloncology.2019.104555

    Article  Google Scholar 

  2. Nguyen-Nielsen, M., Møller, H., Tjønneland, A., Borre, M.: Causes of death in men with prostate cancer: Results from the Danish Prostate Cancer Registry (DAPROCAdata). Cancer Epidemiol. 59, 249–257 (2019). https://doi.org/10.1016/j.canep.2019.02.017

    Article  Google Scholar 

  3. Oikawa, T., Sakata, Y., Nochioka, K., Miura, M., Abe, R., Kasahara, S., Sato, M., Aoyanagi, H., Shiroto, T., Sugimura, K., Takahashi, J., Miyata, S., Shimokawa, H.: Increased risk of cancer death in patients with chronic heart failure with a special reference to inflammation-A report from the CHART-2 Study. Int. J. Cardiol. 290, 106–112 (2019). https://doi.org/10.1016/j.ijcard.2019.04.078

    Article  Google Scholar 

  4. Mitxelena-Iribarren, O., Campisi, J., Martínez de Apellániz, I., Lizarbe-Sancha, S., Arana, S., Zhukova, V., Mujika, M., Zhukov, A.: Glass-coated ferromagnetic microwire-induced magnetic hyperthermia for in vitro cancer cell treatment. Mater. Sci. Eng. C. 106, 110261 (2020). https://doi.org/10.1016/j.msec.2019.110261

  5. Suleman, M., Riaz, S.: In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@MnFe2O4 magnetic nanoparticles. J. Magn. Magn. Mater. 498, 166143 (2020). https://doi.org/10.1016/j.jmmm.2019.166143

    Article  Google Scholar 

  6. Munir, T., Mahmood, A., Fakhar-e-Alam, M., Imran, M., Sohail, A., Amin, N., Latif, S., Rasool, H.G., Shafiq, F., Ali, H., Mahmood, K.: Treatment of breast cancer with capped magnetic-NPs induced hyperthermia therapy. J. Mol. Struct. 1196, 88–95 (2019). https://doi.org/10.1016/j.molstruc.2019.06.067

    Article  ADS  Google Scholar 

  7. Lahiri, B.B., Muthukumaran, T., Philip, J.: Magnetic hyperthermia in phosphate coated iron oxide nanofluids. J. Magn. Magn. Mater. 407, 101–113 (2016). https://doi.org/10.1016/j.jmmm.2016.01.044

    Article  ADS  Google Scholar 

  8. Raveendran, P., Fu, J., Wallen, S.L.: A simple and “green” method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 8, 34–38 (2006). https://doi.org/10.1039/b512540e

    Article  Google Scholar 

  9. Sugimachi, K., Matsuda, H., Ohno, S., Fukuda, A., Matsuoka, H., Mori, M., Kuwano, H.: Long term effects of hyperthermia combined with chemotherapy and irradiation for the treatment of patients with carcinoma of the esophagus. Surg. Gynecol. Obstet. 167, 319–323 (1988)

    Google Scholar 

  10. Matsuda, H., Sugimachi, K., Kuwano, H., Mori, M., Matsuoka, H., Ohno, S.: [Clinical results and prospects of hyperthermia in the treatment of patients with esophageal carcinoma]. Gan to kagaku ryoho. Cancer & Chemother. 15, 1376—1381 (1988)

  11. Thota, S., Wang, Y., Zhao, J.: Colloidal Au-Cu alloy nanoparticles: Synthesis, optical properties and applications. (2018)

  12. Partridge, A.H., Burstein, H.J., Winer, E.P.: Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women With Early-Stage Breast Cancer. JNCI Monogr. 2001, 135–142 (2001). https://doi.org/10.1093/oxfordjournals.jncimonographs.a003451

    Article  Google Scholar 

  13. Maldonado-Camargo, L., Torres-Díaz, I., Chiu-Lam, A., Hernández, M., Rinaldi, C.: Estimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurements. J. Magn. Magn. Mater. 412, 223–233 (2016). https://doi.org/10.1016/j.jmmm.2016.03.087

    Article  ADS  Google Scholar 

  14. Fannin, P.C., Marin, C.N., Couper, C.: The resonance decay function method in the determination of the pre-factor of the Nel relaxation time of single-domain nanoparticles. In: J. Magn. Magn. Mater. pp. 1242–1245. North-Holland (2011)

  15. Kötitz, R., Weitschies, W., Trahms, L., Semmler, W.: Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 201, 102–104 (1999). https://doi.org/10.1016/S0304-8853(99)00065-7

    Article  ADS  Google Scholar 

  16. Menazea, A.A.: Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiat. Phys. Chem. 168, 108616 (2020). https://doi.org/10.1016/j.radphyschem.2019.108616

    Article  Google Scholar 

  17. Lin, Z., Yue, J., Liang, L., Tang, B., Liu, B., Ren, L., Li, Y., Jiang, L.: Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water. Appl. Surf. Sci. 504, 144461 (2020). https://doi.org/10.1016/j.apsusc.2019.144461

    Article  Google Scholar 

  18. Fazio, E., Santoro, M., Lentini, G., Franco, D., Guglielmino, S.P.P., Neri, F.: Iron oxide nanoparticles prepared by laser ablation: Synthesis, structural properties and antimicrobial activity. Colloids Surfaces A Physicochem. Eng. Asp. 490, 98–103 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.034

    Article  Google Scholar 

  19. Sakiyama, K., Koga, K., Seto, T., Hirasawa, M., Orii, T.: Formation of Size-Selected Ni/Nio Core-Shell Particles by Pulsed Laser Ablation. J. Phys. Chem. B. 108, 523–529 (2004). https://doi.org/10.1021/jp035339x

    Article  Google Scholar 

  20. Hassanzadeh-Tabrizi, S.A., Bigham, A., Rafienia, M.: Surfactant-assisted sol-gel synthesis of forsterite nanoparticles as a novel drug delivery system. Mater. Sci. Eng. C. 58, 737–741 (2016). https://doi.org/10.1016/j.msec.2015.09.020

    Article  Google Scholar 

  21. Han, K., Zhao, Z., Xiang, Z., Wang, C., Zhang, J., Yang, B.: The sol-gel preparation of ZnO/silica core-shell composites and hollow silica structure. Mater. Lett. 61, 363–368 (2007). https://doi.org/10.1016/j.matlet.2006.04.064

    Article  Google Scholar 

  22. Mauri, E., Negri, A., Rebellato, E., Masi, M., Perale, G., Rossi, F.: Hydrogel-Nanoparticles Composite System for Controlled Drug Delivery. Gels. 4, 74 (2018). https://doi.org/10.3390/gels4030074

    Article  Google Scholar 

  23. Mirzaei, A., Janghorban, K., Hashemi, B., Bonavita, A., Bonyani, M., Leonardi, S.G., Neri, G.: Synthesis, characterization and gas sensing properties of ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 5, 737–749 (2015). https://doi.org/10.3390/nano5020737

    Article  Google Scholar 

  24. Patil, P.B., Parit, S.B., Waifalkar, P.P., Patil, S.P., Dongale, T.D., Sahoo, S.C., Kollu, P., Nimbalkar, M.S., Patil, P.S., Chougale, A.D.: pH triggered curcumin release and antioxidant activity of curcumin loaded γ-Fe2O3 magnetic nanoparticles. Mater. Lett. 223, 178–181 (2018). https://doi.org/10.1016/j.matlet.2018.04.008

    Article  Google Scholar 

  25. Lemine, O.M., Omri, K., Iglesias, M., Velasco, V., Crespo, P., De La Presa, P., El Mir, L., Bouzid, H., Yousif, A., Al-Hajry, A.: γ-Fe2O3by sol-gel with large nanoparticles size for magnetic hyperthermia application. J. Alloys Compd. 607, 125–131 (2014). https://doi.org/10.1016/j.jallcom.2014.04.002

    Article  Google Scholar 

  26. Piskuła, Z.S., Skokowski, P., Toliński, T., Zieliński, M., Kirszensztejn, P., Nowicki, W.: Structure, magnetic and catalytic properties of SiO2-MFe2O4 (M = Mn Co, Ni, Cu) nanocomposites and their syntheses by a modified sol–gel method. Mater. Chem. Phys. 235, 121731 (2019). https://doi.org/10.1016/j.matchemphys.2019.121731

    Article  Google Scholar 

  27. Bellini, B., Arnaud, A., Rezk, S., Chiossi, M.: An integrated H-bridge circuit in a HV technology. In: LASCAS 2016 - 7th IEEE Latin American Symposium on Circuits and Systems, R9 IEEE CASS Flagship Conference. pp. 331–334. Institute of Electrical and Electronics Engineers Inc. (2016)

  28. Okada, H., Masuda, T., Itoh, T.: Development of miniaturized 300-MHz frequency band antenna with H-bridge power amplifier for wireless sensor node. In: Procedia Engineering. pp. 1028–1031. Elsevier (2011)

  29. Wang, F., Jiang, J.: A novel static frequency converter based on multilevel cascaded H-bridge used for the startup of synchronous motor in pumped-storage power station. Energy Convers. Manag. 52, 2085–2091 (2011). https://doi.org/10.1016/j.enconman.2010.12.018

    Article  Google Scholar 

  30. Yang, Y.B., Xu, H., Zhang, B., Xiong, F., Wang, Z.L.: Measuring bridge frequencies by a test vehicle in non-moving and moving states. Eng. Struct. 203, 109859 (2020). https://doi.org/10.1016/j.engstruct.2019.109859

    Article  Google Scholar 

  31. Skumiel, A., Kaczmarek, K., Flak, D., Rajnak, M., Antal, I., Brząkała, H.: The influence of magnetic nanoparticle concentration with dextran polymers in agar gel on heating efficiency in magnetic hyperthermia. J. Mol. Liq. 304, 112734 (2020). https://doi.org/10.1016/j.molliq.2020.112734

    Article  Google Scholar 

  32. Lahiri, B.B., Ranoo, S., Philip, J.: Effect of orientational ordering of magnetic nanoemulsions immobilized in agar gel on magnetic hyperthermia. J. Magn. Magn. Mater. 451, 254–268 (2018). https://doi.org/10.1016/j.jmmm.2017.10.068

    Article  ADS  Google Scholar 

  33. Bielas, R., Bochińska, A., Józefczak, A.: The influence of initial temperature on ultrasonic hyperthermia measurements. Appl. Acoust. 164, 107259 (2020). https://doi.org/10.1016/j.apacoust.2020.107259

    Article  Google Scholar 

  34. Malekzadeh, A., Pouranfard, A.R., Hatami, N., Kazemnejad Banari, A., Rahimi, M.R.: Experimental investigations on the viscosity of magnetic nanofluids under the influence of temperature, volume fractions of nanoparticles and external magnetic field. J. Appl. Fluid Mech. 9, 693–697 (2016). https://doi.org/10.18869/acadpub.jafm.68.225.24022

  35. Serletis, C., Efthimiadis, K.G.: On the measurement of magnetic viscosity. J. Magn. Magn. Mater. 324, 2547–2552 (2012). https://doi.org/10.1016/j.jmmm.2012.03.042

    Article  ADS  Google Scholar 

  36. Lemine, O.M., Omri, K., El Mir, L., Velasco, V., Crespo, P., De La Presa, P., Bouzid, H., Youssif, A., Hajry, A.: Fe2O3 nanoparticles for magnetic hyperthermia applications. In: Mater. Res. Soc. Symp. Proc. pp. 7–13. Materials Research Society (2015)

  37. Rubinstein, J.: Non-Ferrous Metal Ores: Deposits. CRC Press, Minerals and Plants (2002)

    Book  Google Scholar 

  38. Ding, Q., Liu, D., Guo, D., Yang, F., Pang, X., Che, R., Zhou, N., Xie, J., Sun, J., Huang, Z., Gu, N.: Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials 124, 35–46 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.043

    Article  Google Scholar 

  39. Kozioł-Rachwał, A., ͆lęzak, T., Nozaki, T., Yuasa, S., Korecki, J.: Growth and magnetic properties of ultrathin epitaxial FeO films and Fe/FeO bilayers on MgO(001). Appl. Phys. Lett. 108, 041606 (2016). https://doi.org/10.1063/1.4940890

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shamoon Al Islam or Yasir Jamil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue “Selected articles based on 4th International Conference on Materials Science & Nanotechnology”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Islam, S., Jamil, Y., Javaid, Z. et al. A Study on Thermal Response of Nanoparticles in External Magnetic Field. J Supercond Nov Magn 34, 3223–3228 (2021). https://doi.org/10.1007/s10948-021-05989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05989-6

Keywords

Navigation