Skip to main content
Log in

Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, an experimental study was carried out in order to investigate the effects of Al2O3/water nanofluid with a mean diameter of 50 nm on heat transfer performance in a counter flow double-pipe heat exchanger. The nanofluid was used as cold side fluid and passed through the inner pipe of the double-pipe heat exchanger considering fully developed turbulent flow regime with different Reynolds numbers ranging from 20,000 to 60,000. Experiments were conducted in various cold side fluid flow rates ranging from 1.1 to 3.9 m3/h, inlet temperatures of 40 °C and 50 °C at cold side, and Al2O3/water nanofluids of 0.25% and 0.5% nanoparticles volume concentration. Results indicate that the Nusselt number increases with increasing nanoparticles volume concentration and Reynolds number but decreases with the inlet temperature at cold side of double-pipe heat exchanger. The maximum increase of Nu are respectively 23.2% and 32.23% for inlet temperature of 40 °C and 50 °C. In addition, the single-phase model in CFD (Computational Fluid Dynamics) is adopted to simulate the heat transfer performance by ANSYS Fluent commercial software. It is found that the simulated results show a good agreement with the experimental results and results derived from Gnielinski correlation. The maximum error between experimental Nusselt numbers and simulated results are found to be 12.8%. It is concluded that the CFD approach gives good prediction for heat transfer performance in a double-pipe heat exchanger using Al2O3/water nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C :

Specific heat capacity (J/kg▪K)

d :

Diameter (mm)

g :

Gravity acceleration (m/s2)

h :

Heat transfer coefficient (W/m2▪K)

k :

Thermal conductivity (W/m▪K)

K :

Correction factor

l,L :

Length (m)

m :

Mass flow rate (kg/h)

n :

Empirical shape factor

Nu :

Nusselt number

Pr :

Prandtl number

Q :

Heat transfer rate (W)

r :

Latent heat (kJ/kg)

Re :

Reynolds number

t,T :

Temperature (°C)

ΔT lm :

Logarithmic mean temperature (°C)

u :

Velocity (m/s)

U :

Overall heat transfer coefficient (W/m2 K)

ρ:

Density (kg/m3)

μ:

Dynamic viscosity (Pa s)

φ:

Volume concentration

δ:

Thickness (m)

ξ :

Friction factor

c :

Cold side

f :

Fluid

i,in :

Inlet

m :

Mean

nf :

Nanofluid

o,out :

Outlet

p :

Particle

s :

Saturation

t :

Tube

w :

Wall, Water

References

  1. Hemmat Esfe M, Saedodin S (2015) Turbulent forced convection heat transfer and thermophysical properties of Mgo-water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim 119(2):1205–1213. https://doi.org/10.1007/s10973-014-4197-1

    Article  Google Scholar 

  2. Nair V, Parekh AD, Tailor PR (2018) Water-based Al2O3, CuO and TiO2 nanofluids as secondary fluids for refrigeration systems: a thermal conductivity study. J Braz Soc Mech Sci Eng 40(5):262. https://doi.org/10.1007/s40430-018-1177-6

    Article  Google Scholar 

  3. Gupta M, Kumar R, Arora N, Kumar S, Dilbagi N (2015) Experimental investigation of the convective heat transfer characteristics of TiO2/distilled water nanofluids under constant heat flux boundary condition. J Braz Soc Mech Sci Eng 37(4):1347–1356. https://doi.org/10.1007/s40430-014-0262-8

    Article  Google Scholar 

  4. Salimpour MR, Dehshiri-Parizi A (2015) Convective heat transfer of nanofluid flow through conduits with different cross-sectional shapes. J Mech Sci Technol 29(2):707–713. https://doi.org/10.1007/s12206-015-0130-1

    Article  Google Scholar 

  5. Doshmanziari FI, Zohir AE, Kharvani HR, Jalali-Vahid D, Kadivar MR (2016) Characteristics of heat transfer and flow of Al2O3/water nanofluid in a spiral-coil tube for turbulent pulsating flow. Heat Mass Transf 52(7):1305–1320. https://doi.org/10.1007/s00231-015-1651-y

    Article  Google Scholar 

  6. Khurana D, Choudhary R, Subudhi S (2017) A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids. Heat Mass Transf 53:343–361. https://doi.org/10.1007/s00231-016-1810-9

    Article  Google Scholar 

  7. Dabiri E, Bahrami F, Mohammadzadeh S (2018) Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim 131:2243–2259. https://doi.org/10.1007/s10973-017-6791-5

    Article  Google Scholar 

  8. Sivakumar A, Alagumurthi N, Senthilvelan T (2016) Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat Mass Transf 52(7):1265–1274. https://doi.org/10.1007/s00231-015-1649-5

    Article  Google Scholar 

  9. Elshazly KM, Sakr RY, Ali RK, Salem MR (2017) Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions. Heat Mass Transf 53:1893–1903. https://doi.org/10.1007/s00231-016-1949-4

    Article  Google Scholar 

  10. Venkitaraj KP, Suresh S, Alwin Mathew T, Bibin BS, Abraham J (2018) An experimental investigation on heat transfer enhancement in the laminar flow of water/TiO2 nanofluid through a tube heat exchanger fitted with modified butterfly inserts. Heat Mass Transf 54:813–829. https://doi.org/10.1007/s00231-017-2174-5

    Article  Google Scholar 

  11. Mansoury D, Ilami Doshmanziari F, Rezaie S, Rashidi MM (2019) Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers. J Therm Anal Calorim 135(1):625–643. https://doi.org/10.1007/s10973-018-7286-8

    Article  Google Scholar 

  12. Chennu R, Veeredhi VR (2019) Measurement of heat transfer coefficient and pressure drops in a compact heat exchanger with lance and offset fins for water based Al2O3 nano-fluids. Heat Mass Transf. https://doi.org/10.1007/s00231-019-02707-w

    Article  Google Scholar 

  13. Cao J, Ding Y, Ma C (2014) Aqueous Al2O3 nanofluids: the important factors impacting convective heat transfer. Heat Mass Transf 50(12):1639–1648. https://doi.org/10.1007/s00231-014-1374-5

    Article  Google Scholar 

  14. Aghayari R, Maddah H, Ashori F, Hakiminejad A, Aghili M (2015) Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow. Heat Mass Transf 51(3):301–306. https://doi.org/10.1007/s00231-014-1415-0

    Article  Google Scholar 

  15. Hazbehian M, Maddah H, Mohammadiun H, Alizadeh M (2016) Experimental investigation of heat transfer augmentation inside double pipe heat exchanger equipped with reduced width twisted tapes inserts using polymeric nanofluid. Heat Mass Transf 52(11):2515–2529. https://doi.org/10.1007/s00231-016-1764-y

    Article  Google Scholar 

  16. Maddah H, Ghasemi N (2017) Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks. Heat Mass Transf 53:3459–3472. https://doi.org/10.1007/s00231-017-2068-6

    Article  Google Scholar 

  17. Doruk S, Sara ON, Karaipekli A, Yapici S (2017) Heat transfer performance of water and Nanoencapsulated n-nanadecane based Nanofluids in a double pipe heat exchanger. Heat Mass Transf 53:3399–3408. https://doi.org/10.1007/s00231-017-2072-x

    Article  Google Scholar 

  18. Arya H, Sarafraz MM, Pourmehran O, Arjomandi M (2019) Heat transfer and pressure drop characteristics of MgO nanofluid in a double pipe heat exchanger. Heat Mass Transf. https://doi.org/10.1007/s00231-018-02554-1

    Article  Google Scholar 

  19. Shahsavar A, Rahimi Z, Salehipour H (2019) Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluid in a horizontal double-pipe minichannel heat exchanger. Heat Mass Transf. https://doi.org/10.1007/s00231-018-02558-x

    Article  Google Scholar 

  20. Gnanavel C, Saravanan R, Chandrasekaran M (2019) Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.07.606

    Google Scholar 

  21. Ghafouri A, Salari M (2014) Numerical investigation of the heat transfer enhancement using various viscosity models in chamber filled with water-CuO nanofluid. J Braz Soc Mech Sci Eng 36(4):825–836. https://doi.org/10.1007/s40430-013-0091-1

    Article  Google Scholar 

  22. Rashidi MM, Hosseini A, Pop I, Kumar S, Freidoonimehr N (2014) Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Appl Math Mech 35(7):831–848. https://doi.org/10.1007/s10483-014-1839-9

    Article  MathSciNet  Google Scholar 

  23. Mukesh Kumar PC, Palanisamy K, Kumar J, Tamilarasan R, Sendhilnathan S (2015) CFD analysis of heat transfer and pressure drop in helically coiled heat exchangers using Al2O3/water nanofluid. J Mech Sci Technol 29(2):697–705. https://doi.org/10.1007/s12206-015-0129-7

    Article  Google Scholar 

  24. Naphon P, Arisariyawong T, Nualboonrueng T (2017) Nanofluids heat transfer and flow analysis in vertical spirally coiled tubes using Eulerian two-phase turbulent model. Heat Mass Transf 53(7):2297–2308. https://doi.org/10.1007/s00231-017-1977-8

    Article  Google Scholar 

  25. Natarajan A, Venkatesh R, Gobinath S, Devakumar L, Gopalakrishnan K (2019) CFD simulation of heat transfer enhancement in circular tube with twisted tape insert by using nanofluids. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.06.717

    Google Scholar 

  26. Sheikholeslami M, Jafaryar M, Farkhadnia F, Gorji-Bandpy M, Ganji DD (2015) Investigation of turbulent flow and heat transfer in an air to water double-pipe heat exchanger. Neural Comput & Applic 26(4):941–947. https://doi.org/10.1007/s00521-014-1769-8

    Article  Google Scholar 

  27. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2015) Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger. Eur Phys J Plus 130(11):225. https://doi.org/10.1140/epjp/i2015-15225-y

    Article  Google Scholar 

  28. Pitts DR, Sissom LE (1998) Schaum’s Outline of Heat Transfer, Second Edition. http://linkinghub.elsevier.com/retrieve/pii/0017931079900474

  29. Ghasemi N, Aghayari R, Maddah H (2018) Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and aluminum oxide nanofluid using central composite design method. Heat Mass Transf 54:2113–2130. https://doi.org/10.1007/s00231-018-2292-8

    Article  Google Scholar 

  30. Gnielinski V (2013) On heat transfer in tubes. Int J Heat Mass Transf 63(3):134–140. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.015

    Article  Google Scholar 

  31. Aly WIA (2014) Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers Manag 79:304–316. https://doi.org/10.1016/j.enconman.2013.12.031

    Article  Google Scholar 

  32. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supported by the Fundamental Research Funds for the Central Universities (No. NP2018107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Han, D., Asif, F. et al. Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. Heat Mass Transfer 56, 1127–1140 (2020). https://doi.org/10.1007/s00231-019-02774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02774-z

Navigation