Skip to main content

Advertisement

Log in

Conversion of A medium heavy heating oil tank into A heat storage tank

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Switching to natural gas and refinery gas as combustion fuels during refinery modernization, results in a considerable low usage of a medium heavy heating oil, and an open question of the tank function in which such an oil has been stored. There is an idea to make a conversion of such tanks into heat storages and their integration into the cogeneration plant within oil refinery. The analysis of the conversion of two such existing characteristic tanks was made in this paper. Validation of the model is done by comparing the measurement results on the tank that accumulates the cooling energy with the results of the numerical calculation. The results showed that the numerical model provided good results. Validity evaluation of Half cycle figure of merit of charging and discharging process has been analyzed. For both tanks, for all the flows rate it goes over 95%. It was found that during the charging and discharging procesess a significant conduction impact comes up with lower flows, which increases an outlet width of the thermocline. A flow rate impact onto the efficiency of discharge process for Tank 1 and Tank 2 at outlet water temperature 96 °C was analyzed. For Tank 1 ranges from 90.4 to 91.29%, and for Tank 2 ranges between 90.67 and 92.77%, depending on the water flow rate. With both tanks, the results showed that it is better to keep the flow rate low at the beginning of the discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

c p :

J/kgK,spcific heat capacity

Cint :

kWh, integrated capacity

Cmax :

kWh, maximum (theoretical) capacity of the tank

D:

m, tank diameter

FOM1/2 :

%, validity evaluation of half cycle

Fri :

Froude’s number

g:

m/s2, gravitational acceleration

H:

m, tank height

hi :

m, diffuser inlet height

L:

m, diffuser perimeter

\( \dot{m} \) :

kg/h, mass flow

M:

kg, water mass in the tank

Q:

m3/h, volume flow

q:

m2/h, inlet flow per diffuser lenght unit

R:

m, tank radius

r:

m, diffuser radius

Re:

Reynold’s number

Rii :

Richardson’s number

T:

K, temperature

V:

m3, volume

v:

m/s, velocity

α:

W/m2K,heat transfer coefficient

δ:

m

insulation density

η:

Pas

dynamic viscosity

θ:

dimensionless temperature

λ:

W/mK,

heat conduction coefficient

ρ:

kg/m3, density

ϕ:

fluid property

Δt:

h, time period

in:

inlet

out:

outlet

References

  1. Zhou H, Yang Y, Liu H, Hang Q (2014) Numerical simulation of the combustion characteristics of a low NOx swirl burner: influence of the primary air pipe. Fuel 130:168–176. https://doi.org/10.1016/j.fuel.2014.04.028

    Article  Google Scholar 

  2. Zhou H, Yang Y, Dong K, Liu H, Shen Y, Cen K (2014) Influence of the gas particle flow characteristics of a low-NOx swirl burner on the formation of high temperature corrosion. Fuel 134:595–602. https://doi.org/10.1016/j.fuel.2014.06.027

    Article  Google Scholar 

  3. Lenox C, Kaplan PO (2016) Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions. Energy Econ 60:460–468. https://doi.org/10.1016/j.eneco.2016.06.009

    Article  Google Scholar 

  4. Das BK, Al-Abdeli YM (2017) Optimisation of stand-alone hybrid CHP systems meeting electric and heating loads. Energy Convers Manag 153:391–408. https://doi.org/10.1016/j.enconman.2017.09.078

    Article  Google Scholar 

  5. Gvozdenac D, Gvozdenac Urošević B, Menke C, Urošević D, Bangviwat A (2017) High efficiency cogeneration: CHP and non-CHP energy. Energy 135:269–278. https://doi.org/10.1016/j.energy.2017.06.143

    Article  Google Scholar 

  6. Maifredi C, Puzzi L, Beretta GP (2000) Optimal power production scheduling in a complex cegeneration system with heat storage. Proc 35th Intersoc Energy Conversion Eng Conf Las Vegas. https://doi.org/10.1109/IECEC.2000.870902

  7. Bogdan Ž, Kojar D (2006) Improvement of the cogeneration plant economy by using heat accumulator. Energy 31(13):2285–2292. https://doi.org/10.1016/j.energy.2006.01.012

    Article  Google Scholar 

  8. Streckienė G, Martinaitis V, Andersen AN, Katz J (2009) Feasibility of CHP-plants with thermal stores in the German spot market. Appl Energy 86(11):2308–2316. https://doi.org/10.1016/j.apenergy.2009.03.023

    Article  Google Scholar 

  9. Sarbu I, Sebarchievici CA (2018) Comprehensive review of thermal energy storage, Sustainability 10191. doi:https://doi.org/10.3390/su10010191

  10. Son HS, Kim C, Reindl D, Hong H (2015) The effect of manifold in liquid storage tank applied to solar combisystem. J Mech Sci Technol 29(3):1289–1295. https://doi.org/10.1007/s12206-015-0244-5

    Article  Google Scholar 

  11. Dragsted J, Furbo S, Dennemand M, Bava F (2017) Thermal stratification built up in hot water tank with different inlet stratifiers. Sol Energy 147:414–425. https://doi.org/10.1016/j.solener.2017.03.008

    Article  Google Scholar 

  12. Dogan E, Necdet A (2016) Improved thermal stratification with obstacles placed inside the vertical mantled hot water tanks. Appl Therm Eng 100:20–29. https://doi.org/10.1016/j.applthermaleng.2016.01.069

    Article  Google Scholar 

  13. Bouhal T, Fertahi S, Agrouaz Y, Rhafiki ET, Kousksou T, Jamil A (2017) Numerical modeling and optimization of thermal stratification in solar hot water storage tanks for domestic applications: CFD study. Sol Energy 157:441–455. https://doi.org/10.1016/j.solener.2017.08.061

    Article  Google Scholar 

  14. Abdelhak O, Mhiri H, Bournot P (2015) CFD analysis of thermal stratification in domestic hot water storage tank during dynamic mode. Build Simul. https://doi.org/10.1007/s12273-015-0216-9

    Article  Google Scholar 

  15. Corsin G et al (2016) Horizontal inlets of water storage tanks with low disturbance of stratification. J Solar Energ Eng 138:051011–051011. https://doi.org/10.1115/1.4034228

    Article  Google Scholar 

  16. Adib MAHM et al (2012) Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser, IOP Conf. Ser: Mater Sci Eng 36:012015. https://doi.org/10.1088/1757-899X/36/1/012015

    Article  Google Scholar 

  17. Kong L, Yuan W, Zhu N (2016) CFD simulations of thermal stratification heat storage water tank with an inside cylinder with openings. Proc Eng 146:394–399. https://doi.org/10.1016/j.proeng.2016.06.419

    Article  Google Scholar 

  18. Moncho-Esteve IJ, Gasque M, González-Altozano P, Palau-Salvador G (2017) Simple inlet devices and their influence on thermal stratification in a hot water storage tank. Energ Build 150:625–638. https://doi.org/10.1016/j.enbuild.2017.06.012

    Article  Google Scholar 

  19. Wang Z, Zhang H, Dou B, Huang H, Wu W, Wang Z (2017) Experimental and numerical research of thermal stratification with a novel inlet in a dynamic hot water storage tank. Renew Energy 111:353–371. https://doi.org/10.1016/j.renene.2017.04.007

    Article  Google Scholar 

  20. Al-Habaibeh A, Shakmak B, Fanshawe S (2018) Assessment of a novel technology for a stratified hot water energy storage – the water snake. Appl Energy 222:189–198. https://doi.org/10.1016/j.apenergy.2018.04.014

    Article  Google Scholar 

  21. Oshchepkov MY, Frid SE (2015) Thermal stratification in storage tanks of integrated collector storage solar water heaters. Appl Solar Energ 51(1):74–82. https://doi.org/10.3103/S0003701X15010107

    Article  Google Scholar 

  22. Karim A, Burnett A, Fawzia S (2018) Investigation of stratified thermal storage tank performance for heating and cooling applications. Energies 11:1049. https://doi.org/10.3390/en11051049

    Article  Google Scholar 

  23. Findeisen F et al (2018) Radial diffusers – simulation of three-dimensional flow effects with CFD (part 1). Chemie Ingenieur Technik 90(7):1–14. https://doi.org/10.1002/cite.201700023

    Article  Google Scholar 

  24. Findeisen F et al (2018) Radial diffusers – simulation of three-dimensional flow effects with CFD (part 2). Chemie Ingenieur Technik 90(7):1–11. https://doi.org/10.1002/cite.201700070

    Article  Google Scholar 

  25. Findeisen F et al (2018) Radial diffusers – simulation of three-dimensional flow effects with CFD (part 3). Chemie Ingenieur Technik 90(8):1065–1072. https://doi.org/10.1002/cite.201700126

    Article  Google Scholar 

  26. Findeisen F et al (2017) Radial diffusers in stratified hot waters stores: geometry optimization with CFD. SWC/SHC/ISES Conf Proc. https://doi.org/10.18086/swc.2017.13.04

  27. Streckiene G, Martinaitis V, Vaitiekunas P (2011) Simulation of thermal stratification in the heat storage for CHP plant, environmental engineering, the 8th international conference, Vilnius, Lithuania: 812–819

  28. Streckiene G, Miseviciute V (2011) Research of operation modes of heat storage tank in CHP plant using numerical simulation. Environ Climate Technol 6:91–99. https://doi.org/10.2478/v10145-011-0013-3

    Article  Google Scholar 

  29. Homan K, Sohn C, Soo S (1996) Thermal performance of stratified chilled water storage tanks. HVAC&R Res 2(2):158–169. https://doi.org/10.1080/10789669.1996.10391341

    Article  Google Scholar 

  30. Ehtiwesh IAS, Sousa ACM (2018) Numerical model for the thermal behavior of thermocline storage tanks. Heat Mass Transf 54:831–839. https://doi.org/10.1007/s00231-017-2181-6

    Article  Google Scholar 

  31. Bahnfleth WP, Musser A (1998) Thermal performance of a full-scale stratified chilled-water thermal storage tank. ASHRAE Trans 104(2):377–388

    Google Scholar 

  32. Tran N, Kreider J, Brothers P (1989) Field measurments of chilled water storage thermal performance. ASHRAE Trans 95(1):1106–1112

    Google Scholar 

  33. Wildin M, Truman C (1989) Performance of stratified vertical cylindrical thermal storage tanks, part I: scale model tank. ASHRAE Trans 95(1B):1086–1095

    Google Scholar 

  34. Kostowski W, Skorek J (2005) Thermodynamic and economic analysis of heat application in co-generation systems. Int J Energy Res 29:177–188. https://doi.org/10.1002/er.1052

    Article  Google Scholar 

  35. Dincer I, Rosen MA (2011) Thermal energy storage systems and applications, 2nd edition, John Wiley & Sons

  36. Farmahini-Farahani M (2012) Investigation of four geometrical parameters on thermal stratification of cold water tanks by exergy analysis. Int J Exergy 10(3):332–345. https://doi.org/10.1504/IJEX.2012.046814

    Article  Google Scholar 

  37. Levers S, Lin W (2009) Numerical simulation of three-dimensional flow dynamics in a hot water storage tank. Appl Energy 86(12):2604–2614. https://doi.org/10.1016/j.apenergy.2009.04.010

    Article  Google Scholar 

  38. Yaïci W, Ghorab M, Entchev E, Hayden S (2013) Three-dimensional unsteady CFD simulations of a thermal storage tank performance for optimum design. Appl Therm Eng 60:152–163. https://doi.org/10.1016/j.applthermaleng.2013.07.001

    Article  Google Scholar 

  39. ASHRAE (2012) Handbook – HVAC Systems and Equipment, ASHRAE

  40. Panthalookaran V, Heidemann W, Müller-Steinhagen H (2008) The effects of momentum diffusers and flow guides on the efficiency of stratified hot water seasonal heat stores. Int J Energy Res 32:911–925. https://doi.org/10.1002/er.1403

    Article  Google Scholar 

  41. Musser A, Bahnfleth WP (1998) Evolution of temperature distributions in a full-scale stratified chilled water storage tank with radial diffusers. ASHRAE Trans 104(1):55–67

    Google Scholar 

  42. Bahnfleth WP, Song J, Cimbala JM (2003) Measured and modeled charging of a stratified chilled water thermal storage tank with slotted pipe diffusers, HVAC&R Res 9 (4). doi:https://doi.org/10.1080/10789669.2003.10391081)

    Article  Google Scholar 

  43. Bahnfleth WP, Song J (2005) Constant flow rate charging characteristics of a full-scale stratified chilled water storage tank with double-ring slotted pipe diffusers. Appl Therm Eng 25:3067–3082. https://doi.org/10.1016/j.applthermaleng.2005.03.013

    Article  Google Scholar 

  44. Sun J, Hua J, Fu L, Zhang S (2018) Experimental study of a large temperature difference thermal energy storage tank for centralized heating systems. Therm Sci 22(1B):613–621. https://doi.org/10.2298/TSCI160720173S

    Article  Google Scholar 

  45. Jaluria Y (2007) Design and optimization of thermal systems. CRC Press, 2nd edition

  46. Urbaneck T, Findeisen F et al (2017) Development of overground hot water stores in segmental construction for solar and district heating systems within the project OBSERW. Int Solar Energ Soc. https://doi.org/10.18086/swc.2017.13.11

  47. Shamshirgaran SR, Assadi MK, Sharma KV (2018) Application of nanomaterials in solar thermal energy storage. Heat Mass Transf 54:1555–1577. https://doi.org/10.1007/s00231-017-2259-1

    Article  Google Scholar 

  48. Musser A, Bahnfleth WP (2001) Parametric study of charging inlet diffuser performance in stratified chilled water storage, tanks with radial diffusers: part 1-model development and validation. HVAC&R Res 7(1):31–49. https://doi.org/10.1080/10789669.2001.10391428

    Article  Google Scholar 

  49. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method, Longman Scientific & Technical

  50. Herwig A, Umbreit L, Rühling K (2017) Measurement-based modelling of large atmospheric heat storage tanks. Energy Procedia 149:179–188. https://doi.org/10.1016/j.egypro.2018.08.182

    Article  Google Scholar 

  51. Khan F, Savilonis BJ (2016) Plate diffuser performance in spherical tank thermocline storage system. J Energ Resour Technol 138:052006–052001. https://doi.org/10.1115/1.4033503

    Article  Google Scholar 

  52. Jannatabadi M, Taherian H (2012) An experimental study of influence of hot water consumption rate on the thermal stratification inside a horizontal mantle storage tank. Heat Mass Transf 48:1103–1112. https://doi.org/10.1007/s00231-011-0958-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lino Kocijel.

Ethics declarations

Conflict of interest

On behalf of allauthors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocijel, L., Mrzljak, V. & Glažar, V. Conversion of A medium heavy heating oil tank into A heat storage tank. Heat Mass Transfer 56, 871–890 (2020). https://doi.org/10.1007/s00231-019-02751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02751-6

Navigation