Skip to main content
Log in

Transient heat conduction through a substrate of brine-spongy ice

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An analytical model for heat conduction through brine-spongy ice is developed. This model fills a gap in knowledge related to transient heat conduction to a two-phase substrate which is crucial for modeling transient icing and deicing of cold surfaces in contact with salt water. The core of the model is based on the phase change of pure ice and brine pockets trapped in the structure of spongy ice. Freezing of brine pockets causes the release of the latent heat of fusion that is considered as the source of heat generation distributed throughout the brine-spongy ice. A nonlinear partial differential equation and a number of equations of state for ice, brine, and brine-spongy ice create governing equations of heat transfer through brine-spongy ice. A standard numerical scheme solves the set of equations in various initial conditions. The variation of temperature, volume fraction of brine and salinity of brine pockets are calculated numerically. Experimental samples of brine-spongy ice are examined under transient conditions and their surface temperatures are captured using an infrared thermal camera. The numerical results, which are for various overall salinities, are closely aligned with the measured surface temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\( {\text{c}}_{\text{b}} \) :

Specific heat capacity of brine (J/kg K)

\( {\text{c}}_{\text{e}} \) :

Equivalent specific heat capacity of brine-spongy ice (J/kg K)

\( {\text{c}}_{\text{i}} \) :

Specific heat capacity of ice (J/kg K)

\( {\text{c}}_{\text{s}} \) :

Specific heat capacity of brine-spongy ice (J/kg K)

\( {\text{k}}_{\text{b}} \) :

Thermal conductivity of brine (W/m K)

\( {\text{k}}_{\text{i}} \) :

Thermal conductivity of ice (W/m K)

\( {\text{k}}_{\text{s}} \) :

Thermal conductivity of brine-spongy ice (W/m K)

\( {\text{L}} \) :

Ice sample length (m)

\( {\text{L}}_{\text{Hb}} \) :

Latent heat of fusion of brine (J/kg)

\( {\text{Q}}_{\text{i}} \) :

Input heat flux (J/s)

\( {\text{Q}}_{\text{o}} \) :

Output heat flux (J/s)

\( {\text{Q}}_{\text{g}}^{\prime \prime \prime } \) :

Volumetric heat generation (J/m3)

\( {\dot{\text{Q}}}_{\text{g}}^{\prime \prime \prime } \) :

Rate of volumetric heat generation (J/m3 s)

\( {\text{S}} \) :

Overall salinity (‰)

\( {\text{S}}_{\text{b}} \) :

Salinity of brine pockets (‰)

\( {\text{T}} \) :

Temperature (oC)

\( {\text{T}}_{\text{L}} \) :

Temperature at \( x = L \) (oC)

\( {\text{T}}_{\text{i}} \) :

Initial temperature (oC)

\( {\text{T}}_{\text{s}} \) :

Contact temperature (oC)

\( {\text{t}} \) :

Time (s)

\( {\text{t}}_{0} \) :

Initial time (s)

\( {\text{V}}_{\text{b}} \) :

Volume of brine pocket in the element of brine-spongy ice (m3)

\( {\text{V}}_{\text{Fb}} \) :

Volume fraction of brine (—)

\( {\text{V}}_{\text{i}} \) :

Volume of ice in the element of brine-spongy ice (m3)

\( {\text{V}}_{\text{s}} \) :

Volume of the element of brine-spongy ice (m3)

\( \upalpha_{\text{cb}} \) :

Coefficient of the equation of specific heat capacity of brine (—)

\( \upalpha_{\text{ci}} \) :

Coefficient of the equation of specific heat capacity of ice (—)

\( \upalpha_{\text{kb}} \) :

Coefficient of the equation of thermal conductivity of brine (—)

\( \upalpha_{\text{ki}} \) :

Coefficient of the equation of thermal conductivity of ice (—)

\( \upalpha_{\text{LHb}} \) :

Coefficient of the equation of latent heat of fusion of brine (—)

\( \upalpha_{\text{sb}} \) :

Coefficient of the equation of salinity of brine (—)

\( \upalpha_{{\uprho{\text{b}}}} \) :

Coefficient of the equation of density of brine (—)

\( \upalpha_{{\uprho{\text{i}}}} \) :

Coefficient of the equation of density of ice (—)

\( \updelta{\text{Q}}_{\text{g}}^{\prime \prime \prime } \) :

Variation of volumetric heat generation (J/m3)

\( \updelta{\text{t}} \) :

Time interval (s)

\( \updelta{\text{V}}_{\text{Fb}} \) :

Variation of volume fraction of brine (—)

\( \updelta{\text{V}}_{\text{i}} \) :

Variation of volume of ice (m3)

\( \uprho_{\text{b}} \) :

Density of brine (kg/m3)

\( \uprho_{\text{e}} \) :

Equivalent density of brine-spongy ice (kg/m3)

\( \uprho_{\text{i}} \) :

Density of ice (kg/m3)

\( \uprho_{\text{s}} \) :

Density of brine-spongy ice (kg/m3)

References

  1. Sugawara M, Komatsu Y, Onodera D, Beer H (2012) Three-dimensional freezing of water in a copper foils porous layer around a coolant-carrying tube. Heat Mass Transf 48:1847–1854. doi:10.1007/s00231-012-1030-x

    Article  Google Scholar 

  2. Sugawara M, Komatsu Y, Beer H (2008) Melting and freezing around a horizontal cylinder placed in a square cavity. Heat Mass Transf 45:83–92. doi:10.1007/s00231-008-0403-7

    Article  Google Scholar 

  3. Sugawara M, Onodera T, Komatsu Y et al (2008) Freezing of water saturated in aluminum wool mats. Heat Mass Transf 44:835–843. doi:10.1007/s00231-007-0300-5

    Article  Google Scholar 

  4. Yu Z-T, Fan L-W, Hu Y-C, Cen K-F (2010) Perturbation solution to heat conduction in melting or solidification with heat generation. Heat Mass Transf 46:479–483. doi:10.1007/s00231-010-0596-4

    Article  Google Scholar 

  5. Lakzian E, Parsian A, Lakzian K (2016) Numerical simulation of melting ice around a floating by microwaves. Heat Mass Transf 52:429–436

    Article  Google Scholar 

  6. Odukoya A, Naterer GF (2015) Heat transfer and multiphase flow with hydrate formation in subsea pipelines. Heat Mass Transf 51:901–909. doi:10.1109/OCEANS.2014.7003017

    Article  Google Scholar 

  7. Makkonen L (1987) Salinity and growth rate of ice formed by sea spray. Cold Reg Sci Technol 14:163–171

    Article  Google Scholar 

  8. Saha D, Dehghani SR, Pope K, Muzychka Y (2016) Temperature distribution during solidification of saline and fresh water droplets after striking a super-cooled surface. In: Arctic technology conference

  9. Lozowski EP, Blackmore RZ, Forest TW, Shi J (1996) Spongy icing in the marine environment. American Society of Mechanical Engineers, New York

    Google Scholar 

  10. Weeks WF, Ackley SF (1986) The growth, structure, and properties of sea ice. In: Norbert U (ed) The geophysics of sea ice. Springer, US, pp 9–164

    Chapter  Google Scholar 

  11. Bodaghkhani A, Dehghani SR, Muzychka YS, Colbourne B (2016) Understanding spray cloud formation by wave impact on marine objects. Cold Reg Sci Technol 129:114–136

    Article  Google Scholar 

  12. Dehghani-Sanij AR, Dehghani SR, Naterer GF, Muzychka YS (2017) Sea spray icing phenomena on marine vessels and offshore structures: review and formulation. Ocean Eng 132:25–39

    Article  Google Scholar 

  13. Panov VV (1978) Icing of ships. Polar Geogr 2:166–186

    Article  Google Scholar 

  14. Paul Zakrzewski W, Lozowski EP, Muggeridge D (1988) Estimating the extent of the spraying zone on a sea-going ship. Ocean Eng 15:413–429. doi:10.1016/0029-8018(88)90008-X

    Article  Google Scholar 

  15. Lozowski EP, Szilder K, Makkonen L (2000) Computer simulation of marine ice accretion. Philos Trans R Soc London A Math Phys Eng Sci 358:2811–2845. doi:10.1098/rsta.2000.0687

    Article  Google Scholar 

  16. Dehghani SR, Naterer GF, Muzychka YS (2016) Droplet size and velocity distributions of wave-impact sea spray over a marine vessel. Cold Reg Sci Technol 132:60–67. doi:10.1016/j.coldregions.2016.09.013

    Article  Google Scholar 

  17. Dehghani SR, Muzychka YS, Naterer GF (2016) Droplet trajectories of wave-impact sea spray on a marine vessel. Cold Reg Sci Technol 127:1–9. doi:10.1016/j.coldregions.2016.03.010

    Article  Google Scholar 

  18. Fazelpour A, Dehghani SR, Masek V, Muzychka YS (2016) Infrared image analysis for estimation of ice load on structures. In: Arctic technology conference

  19. Dehghani SR, Muzychka YS, Naterer GF (2017) Water breakup mechanisms for wave-impact sea spray on a vessel bow. Ocean Eng 134:50–61

    Article  Google Scholar 

  20. Shakeel T (1987) Dynamics of spontaneous pattern formation in dendritic ice crystal growth. PhD Thesis, The State University of New York at Buffalo

  21. Glicksman ME (2012) Mechanism of dendritic branching. Metall Mater Trans A 43:391–404. doi:10.1007/s11663-011-9594-2

    Article  Google Scholar 

  22. Makkonen L (1990) The origin of spongy ice. In: Proceedings of the 10th IAHR symposium ice, pp 1022–1030

  23. Gates EM, Narten R, Lozowski EP, Makkonen L (1986) Marine icing and spongy ice. In: Proceedings of the 8th IAHR symposium ice, pp 153–163

  24. Blackmore RZ, Lozowski EP (2003) Spongy icing modelling: progress and prospects. In: Thirteenth international offshore polar engineering conference

  25. Shan X, Shu N (2006) Discussion on methods of de-icing for overhead transmission lines. Gaodianya Jishu/High Volt Eng 32:25–27

    Google Scholar 

  26. Laforte JLL, Allaire MAA, Laflamme J (1998) State-of-the-art on power line de-icing. Atmos Res 46:143–158. doi:10.1016/S0169-8095(97)00057-4

    Article  Google Scholar 

  27. Thomas SK, Cassoni RP, MacArthur CD (1996) Aircraft anti-icing and de-icing techniques and modeling. J Aircr 33:841–854

    Article  Google Scholar 

  28. Embry GD, Erskine RW, Haslim LA et al (1990) Electro-expulsive separation system shipboard applications. Nav Eng J 102:55–66

    Article  Google Scholar 

  29. Weeks W (2010) On sea ice. University of Alaska Press

  30. Blackmore RZ, Lozowski EP (1998) A theoretical spongy spray icing model with surficial structure. Atmos Res 49:267–288. doi:10.1016/S0169-8095(98)00087-8

    Article  Google Scholar 

  31. Macklin WC, Ryan BF (1962) On the formation of spongy ice. Q J R Meteorol Soc 88:548–549

    Article  Google Scholar 

  32. Blackmore RZ, Makkonen L, Lozowski EP (2002) A new model of spongy icing from first principles. J Geophys Res Atmos 107:1–15. doi:10.1029/2001JD001223

    Article  Google Scholar 

  33. Lozowski EP, Oleskiw M, Blackmore RZ, et al (2005) Spongy icing revisited: measurements of ice accretion liquid fraction in two icing wind tunnels. In: 43rd AIAA Aerospace Sciences Meeting Exhibit AIAA Reno, pp 2005–2658

  34. Frankenstein G, Garner R (1967) Equations for determining the brine volume of sea ice from −0.5 °C to −22.9 °C. J Glaciol 6:943–944

    Article  Google Scholar 

  35. Ozisik MN (1993) Heat conduction. Wiley, New York

    Google Scholar 

  36. Cox GFN, Weeks WF (1975) Brine drainage and initial salt entrapment in sodium chloride ice. DTIC Document

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Statoil (Norway), MITACS, and Petroleum Research Newfoundland and Labrador (PRNL) (IT03198) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Dehghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, S.R., Naterer, G.F. & Muzychka, Y.S. Transient heat conduction through a substrate of brine-spongy ice. Heat Mass Transfer 53, 2719–2729 (2017). https://doi.org/10.1007/s00231-017-2016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2016-5

Keywords

Navigation