Skip to main content
Log in

Melting and freezing around a horizontal cylinder placed in a square cavity

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Freezing/melting of water/ice around a horizontal cylinder placed in a square cavity of the inner side length H is investigated numerically. The cylinder is fixed at the centerline of the cavity and placed at various vertical distances of h = H/3, H/2 and 2H/3 from the bottom. Melting decreases considerably with increasing cylinder distance h. Freezing shows the utmost effect at h = H/2, other locations H/3 and h = 2H/3 will considerably retard freezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B :

body force (Eqs. 3 and 12)

c :

specific heat

d :

outer diameter of the cooling/heating cylinder (=19.05 mm)

d p :

diameter of a sphere particle in the porous bed

f :

mass fraction

g :

gravitational acceleration

h :

the distance of the cooling/heating cylinder center from the cavity bottom

h f :

latent heat of freezing/melting

H :

inner side length of the square cavity

k :

thermal conductivity

K :

permeability

K 0 :

permeability coefficient

L :

length of the cooling/heating cylinder in the experiment (see Fig. 2)

M :

transient mean freezing/melting mass per unit outer surface area of the cooling/heating cylinder

p :

pressure

S :

equivalent freezing/melting front distance from the cooling/heating cylinder center

t :

time

T :

temperature

T ph :

freezing/melting temperature (0°C)

u :

x-component velocity

v :

y-component velocity

V:

velocity vector composed of u and v

x :

horizontal coordinate

Δx :

mesh sizes of x-coordinate

y :

vertical coordinate

Δy :

mesh sizes of y-coordinate

ε :

porosity (=1 − γ p = γ s + \(\gamma_{\rm \ell}\))

γ :

volume fraction

\(\rm \upsilon \) :

kinematic viscosity

ρ :

density

c:

cooling

f:

freezing

h:

heating

k:

phase k (p, s and \( \rm{\ell} \))

\( \rm{\ell} \) :

liquid (water)

m:

melting

p:

particle

s:

solid (ice)

References

  1. Viskanta R (1991) Phase change heat transfer in porous media. In: Proceedings in third international symposium on cold regions heat transfer, Fairbanks, Alaska, pp 1–24

  2. Fukai J, Hamada Y, Morozumi Y, Miyatake O (2003) Improvement of the thermal characteristics of latent heat thermal energy storage units using carbon–fiber brushes. Int J Heat Mass Transf 46:4513–4525

    Article  Google Scholar 

  3. Krishnan S, Murthy JY, Garimella SV (2005) A two-temperature model for solid-liquid phase change in metal foams. ASME J Heat Transf 127:995–1004

    Article  Google Scholar 

  4. Sugawara M, Onodera T, Komatsu Y, Tago M, Beer H (2007) Freezing of water saturated in aluminum wool mats. Heat Mass Transf 44(7):835–843

    Article  Google Scholar 

  5. Bathelt AG, Viskanta R (1981) Heat transfer and interface motion during melting and solidification around a finned heat source/sink. ASME J Heat Transf 103:720–726

    Google Scholar 

  6. Padmanabhan PV, Murthy MVK (1986) Outward Phase Change in a Cylindrical Annulus with Axial Fins on the Inner Tube. Int J Heat Mass Transf 29(12):1855–1868

    Article  Google Scholar 

  7. Sasaguchi K, Imura H, Furusho H (1986) Heat transfer characteristics for latent heat storage system with finned tube (1st report: experimental study for solidification and melting processes) (in Japanese). Trans Jpn Soc Mech Eng (Ser B) 52(473):159–166

    Google Scholar 

  8. Sasaguchi K, Imura H, Furusho H (1986) Heat transfer characteristics for latent heat storage system with finned tube (2nd report: comparison of numerical ad experiment for solidification processes) (in Japanese). Trans Jpn Soc Mech Eng (Ser B) 52(473):167–173

    Google Scholar 

  9. Sugawara M, Kamada H, Fujita T (1990) A study of the fin size ratio for freezing of water on an upper coolong wall with fins (in Japanese). Trans Jpn Soc Mech Eng (Ser B) 56(532):3835–3840

    Google Scholar 

  10. Sasaguti K, Takeo H (1994) Effect of the orientation of a finned surface on the melting of frozen porous media. Int J Heat Mass Transf 37(1):13–26

    Article  Google Scholar 

  11. Zhang Y, Faghri A (1995) Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf 39(15):3165–3173

    Article  Google Scholar 

  12. Lamberg P, Siren K (2003) Analytical model for melting in a semi-infinite PCM storage with an internal fin. Heat Mass Transf 39:167–176

    Google Scholar 

  13. Inaba H, Matsuo K, Horibe A (2003) Numerical simulation for fin effect of a rectangular latent heat storage vessel packed with molten salt under heat release process. Heat Mass Transf 39:231–237

    Google Scholar 

  14. Stritih U (2004) An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf 47:2841–2847

    Article  Google Scholar 

  15. Shatikian V, Ziskind G, Letan R (2005) Numerical investigation of a PCM-based heat sink with internal fins. Int J Heat Mass Transf 48:3689–3706

    Article  Google Scholar 

  16. Bathelt AG, Van Buren PD, Viskanta R (1981) Heat transfer during solidification around a cooled horizontal cylinder. AIChE Symp Ser 75(189):103–111

    Google Scholar 

  17. Prusa J, Yao LS (1984a) Melting around a horizontal heated cylinder: part I—Perturbation and numerical solution for constant heat flux boundary condition. ASME J Heat Transf 106:376–384

    Google Scholar 

  18. Prusa J, Yao LS (1984b) Melting around a horizontal heated cylinder: part II—numerical solution for isothermal boundary condition. ASME J Heat Transf 106:469–474

    Google Scholar 

  19. Bareiss M, Beer H (1984) An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Transf 27(5):739–746

    Article  Google Scholar 

  20. Zhang GP, Jiji LM, Weinbaum S (1985) Quasi-three-dimensional steady-state analytic solution for melting or freezing around a buried pipe in a semi-infinite medium. ASME J Heat Transf 107:245–247

    Google Scholar 

  21. Rieger H, Beer H (1986) The melting process of ice inside a horizontal cylinder: effects of density anomaly. ASME J Heat Transf 108:166–173

    Article  Google Scholar 

  22. Chung JD, Lee JS, Yoo H (1997) Thermal instability during the melting process in an isothermally heated horizontal cylinder. Int J Heat Mass Transf 40(16):3899–3907

    Article  MATH  Google Scholar 

  23. Sasaguti K, Kusano K, Viskanta R (1997) A numerical analysis of solid–liquid phase change heat transfer around a single and two horizontal, vertically spaced cylinders in a rectangular cavity. Int J Heat Mass Transf 40(6):1343–1354

    Article  Google Scholar 

  24. Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems–I. Model formation. Int J Heat Mass Transf 30:2161–2170

    Article  MATH  Google Scholar 

  25. Kaviany M (1995) Principles of heat transfer in porous media, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  26. Sasaguchi K (1994) Heat and flow analysis accompanied with solid–liquid phase change (Kikai no Kenkyu, in Japanese). Mech Res 46-9:931–936

    Google Scholar 

  27. Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems–II. Application to solidification in a rectangular cavity. Int J Heat Mass Transf 30:2171–2187

    Article  Google Scholar 

  28. Patankar SV (1980) Numerical heat transfer and fluid flow, Hemisphere Publishing Company, NY

    MATH  Google Scholar 

  29. Prakash C, Voller V (1989) On the numerical solution of continuum mixture model equations describing binary solid-liquid phase change. Numer Heat Transf B 15:171–189

    Article  MATH  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge support for this study by the technical official T. Fujita.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sugawara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, M., Komatsu, Y. & Beer, H. Melting and freezing around a horizontal cylinder placed in a square cavity. Heat Mass Transfer 45, 83–92 (2008). https://doi.org/10.1007/s00231-008-0403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0403-7

Keywords

Navigation